K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC=BD

c: ABDC là hình bình hành

=>AB//DC

16 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

Ta có: AB//CD

AB\(\perp\)AC

Do đó: CD\(\perp\)CA

Xét ΔABC vuông tại A và ΔCDA vuông tại C có

AB=CD

AC chung

Do đó: ΔABC=ΔCDA

c: Ta có: ΔABC=ΔCDA

=>BC=DA

Xét ΔMCA và ΔMBD có

MC=MB

\(\widehat{CMA}=\widehat{BMD}\)(hai góc đối đỉnh)

MA=MD

Do đó: ΔMCA=ΔMBD

=>\(\widehat{MCA}=\widehat{MBD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

Ta có: AC//BD

AC\(\perp\)CD

Do đó: DC\(\perp\)DB

=>ΔDBC vuông tại D

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

DO đó: ΔABM=ΔACM

b: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

5 tháng 1 2022

Vẽ hình giúp mình luôn đc không ạ

28 tháng 11 2015

A B C M D

a) Xét \(\Delta ABMvà\Delta DCMcó:\)

MB=MC

góc AMB=góc CMD

MA=MD

\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)

b) Xét \(\Delta AMCvà\Delta BMDcó:\)

MC=MB

góc AMC=góc BMD

MA=MD

\(\Rightarrow\Delta AMC=\Delta DMB\left(c-g-c\right)\)

\(\Rightarrow AC=BD\)(cặp cạnh tương ứng)

c) Theo a), \(\Delta ABM=\Delta DCM\Rightarrow\)góc ABM=góc DCM (cặp góc tương ứng)

Mà 2 này tạo với BC hai góc so le trong nên AB//CD

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB=CD và AB//CD

b: Ta có: ABDC là hình bình hành

nên BD//AC

c: Ta có: AB//CD

nên \(\widehat{ABC}=\widehat{DCB}\)

22 tháng 1 2022

cop trắng trợn thế

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

a) Xét ΔABM và ΔDCM có 

MB=MC(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MA=MD(gt)

Do đó: ΔABM=ΔDCM(c-g-c)

b) Ta có: ΔABM=ΔDCM(cmt)

nên AB=CD(Hai cạnh tương ứng)

mà AB<AC(gt)

nên CD<AC

Xét ΔACD có 

CD<AC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CAD}\)

và góc đối diện với cạnh AC là \(\widehat{ADC}\)

nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)

mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)

nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)