Chứng minh rằng: 2n+1111...1(n số 1) chia hết cho 3 với n là STN ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
N
0
19 tháng 8 2019
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
8 tháng 10 2016
mình biết cách làm
đó mai mình
chỉ cho nhé vì
mình cũng làm bài
này nhiều rùi
NT
1
HP
6 tháng 5 2016
Ta có:11n+2+122n+1
=11n.112+(122)n.12
=11n.121+144n.12
=11n.(133-12)+144n.12
=11n.133-11n.12+144n.12
=11n.133+144n.12-11n.12
=11n.133+12.(144n-11n)
Ta có hằng đẳng thức:an-bn=(a-b)(an-1+an-2b+.....+abn-2+bn-1) luôn chia hết cho (a-b)
=>144n-11n chia hết cho (144-11)=133
=>12.(144n-11n) chia hết cho 133
Mà 11n.133 chia hết cho 133
=>11n.133+12.(144n-11n) chia hết cho 133
=> đpcm
Vì 111...11(n số 1) có tổng các chữ số là n
=>111...11(n số 1) đồng dư với n (mod 3)
=>2n+111...11(n số 1) đồng dư với 2n +n=3n(mod 3)
Vì 3n chia hết cho 3
=>2n +111..11(n số 1) đồng dư với 0(mod 3)
=>2n+111...11(n số 1) chia hết cho 3(với n là STN)
Vậy với mọi n là STN thì 2n+111...11(n số 1) chia hết cho 3
Xsfgvhtewwerrrrrddhhfffgfffgfgffhjjjnvcxsaseertuikmjuuyyyyttttccccdgjnjhewqpl., cxse yygbdwvi hhnni