- Cho hai phân số 1/n và 1/n+1(n thuộc Z, n>0)
Chứng minh rằng tích của 2 phân số trên bằng hiệu của chúng.
2.Chứng minh rằng 1/a=1/(a+1)+1/[a(a=1)] với a thuộc Z, a khác 0 và a khác -1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/n-1/n+1=n+1/n.(n+1)-n/n.(n+1)=1/n.(n+1)
1/n.1/n+1=1/n(n+1)
=> hiệu của chúng = tích của chúng
\(\frac{1}{n}\)- \(\frac{1}{n+1}\)= \(\frac{n+1}{n\left(n+1\right)}\)- \(\frac{n}{n\left(n-1\right)}\)=\(\frac{n+1-n}{n\left(n+1\right)}\)= \(\frac{1}{n\left(n+1\right)}\)
=> \(\frac{1}{n\left(n+1\right)}\)= \(\frac{1}{n}\). \(\frac{1}{n+1}\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
Vậy \(\frac{1}{n};\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)
\(=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)
Cho mik xin tk
Ta có công thức \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)(bạn tự lên mạng coi cách chứng minh nha)
Áp dụng vào bài suy ra \(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng theo vế ta được \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)(đpcm)
để A=5/n-1 là phân số thì n#1
để A=5/n-1 là số nguyên thì 5 chia hết cho n-1
suy ra n-1 thuộc Ư(5)={1;-1;5;-5}
lập bảng ta có n={2;0;6;-4}
ta có ước của hai số nguyên liên tiếp bằng 1
suy ra Ư(n: n-1)=1 vậy n/n-1 là phân số tối giản
ta có 1/1x2+1/2x3+1/3x4+....+1/49/50
=1/1-1/2+1/2-1/3+1/4-1/5 +......+1/49-1/50
=1-1/50
=49/50<1
vậy 1/1x2+1/2x3+1/3x4+.....+1/49x50<1
1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n
Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)
\(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)
Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
2.Tương tự
mình biết