Cho A=1/2.3/4.5/6.....99/100
Chứmg minh 1/15<A<1/10
Các bạn giúp mình trong thời gian ngắn nhất nha mình đang rất cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a =1/2.3/4.5/6.....99/100.Chứng minh rằng:1/15<a<1/10.
ta co a < 2/3.4/5.....100/101
nhan hai ve cho a ta co
a^2 <2/3.4/5...100/101.1/2.3/4.5/6...99/100
a^2<1/101 <1/100
a< can 1/100 a <1/10.
Cm tương tự ta dc a>1/15.
Bn cx có thể kham khảo bài làm khác là:https://diendan.hocmai.vn/threads/toan-6-cmr-a-1-10-va-a-1-15.223994/
Để chứng minh A<1/10 thì ta chứng minh A<2/3.4/5.6/7....100/101
Để chứng minh A>1/15 thì ta chứng minh A>1/2.2/3.4/5.98/99
Ta có: \(\frac{a}{b}\)luôn bé hơn \(\frac{a+n}{b+n}\)nếu a < b (a ; b ; thuộc Z ; n thuộc N*)
Thêm 1 vào tử và mẫu của mỗi phân số trên, ta có:
\(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\left(...\right).\frac{100}{101}\)
=>\(A^2< \frac{1.2.3.\left(...\right).100}{2.3.4.\left(...\right).101}=\frac{1}{101}\)(nhân cả 2 vế cho A)
Quy tắc:\(\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}\)
=>\(A^2< \frac{1}{101}< \frac{1}{100}=\frac{1^2}{10^2}=\left(\frac{1}{10}\right)^2\)
=>\(A< \frac{1}{10}\) (1)
Giữ nguyên \(\frac{1}{2}\), bớt đi ở tử và mẫu của các phân số còn lại, ta có:
\(A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}.\left(...\right).\frac{98}{99}\)
=>\(A^2>\frac{1}{2}.\frac{1}{2}.\frac{2}{3}.\left(...\right)\frac{99}{100}\)(nhân cả 2 vế cho A)
=>\(A^2>\frac{1}{2}.\frac{1.2.3.\left(...\right).99}{2.3.4.\left(...\right).100}=\frac{1}{2}.\frac{1}{100}=\frac{1}{200}\)
Mà\(\left(\frac{1}{15}\right)^2=\frac{1}{225}< \frac{1}{200}< A^2\)
=>\(\frac{1}{15}< A\) (2)
Từ (1) và (2) => \(\frac{1}{15}< A< \frac{1}{10}\)(đpcm)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow A^2< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}.\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A^2< \frac{1}{101}< \frac{1}{100}=\frac{1}{10^2}\)
\(\Leftrightarrow A< \frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}.\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{200}>\frac{1}{225}=\frac{1}{15^2}\)
\(\Rightarrow A>\frac{1}{15}\)