K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1

Đây là toán Viet của lớp 10 chứ ko phải lớp 9, lớp 9 chưa học giải BPT bậc 2 để giải các điều kiện cho bài toán này:

\(\Delta'=\left(m+1\right)^2-2\left(m+2\right)\left(m-4\right)=-m^2+6m+17\)

- Pt có 2 nghiệm pb trái dấu khi:

\(ac=2\left(m+2\right)\left(m-4\right)< 0\Rightarrow-2< m< 4\)

- Pt có 2 nghiệm cùng dấu khi:

\(\left\{{}\begin{matrix}\Delta'=-m^2+6m+17\ge0\\ac=2\left(m+2\right)\left(m-4\right)>0\\\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3-\sqrt{26}\le m\le3+\sqrt{26}\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3-\sqrt{26}\le m< -2\\4< m\le3+\sqrt{26}\end{matrix}\right.\) (1)

- Pt có 2 nghiệm cùng âm khi pt có 2 nghiệm cùng dấu đồng thời:

 \(x_1+x_2=\dfrac{m+1}{m+2}< 0\Rightarrow-2< m< -1\) (2)

Kết hơp (1);(2) \(\Rightarrow m\in\varnothing\)

12 tháng 2 2019

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn

(x1-1)(x2^2-5x2+m-4)=0

=>x1=1 và x2^2-x2(x1+x2-1)+x1x2+1=0

=>x1=1 và x2^2-x2x1-x2^2+x2+x1x2+1=0

=>x1=1 và x2=-1

x1*x2=m-3

=>m-3=-1

=>m=2

NV
21 tháng 4 2023

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)

\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)

Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)

Do đó:

a.

Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm

TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)

TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)

b.

Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)

\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)

c.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)

d.

Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)

NV
21 tháng 4 2023

À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa

Δ=(2m-2)^2-4(-2m+5)

=4m^2-8m+4+8m-20=4m^2-16

Để PT có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

x1-x2=-2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(2m-2)^2-4(-2m+5)=4

=>4m^2-8m+4+8m-20=4

=>4m^2=20

=>m^2=5

=>m=căn 5 hoặc m=-căn 5

x1+x2=2m-2

2x1-x2=2

=>3x1=2m và 2x1-x2=2

=>x1=2m/3 và x2=4m/3-2

x1*x2=-2m+1

=>8/9m^2-4/3m+2m-1=0

=>8/9m^2+2/3m-1=0

=>8m^2+6m-9=0

=>m=3/4 hoặc m=-3/2

31 tháng 3 2023

\(x^2-2\left(m-1\right)x-2m+1=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left[2\left(m-1\right)\right]^2-4\left(-2m+1\right)>0\)

\(\Leftrightarrow4\left(m-1\right)^2+8m-4>0\)

\(\Leftrightarrow4m^2-8m+4+8m-4>0\)

\(\Leftrightarrow4m^2>0\Leftrightarrow m\ne0\)

Vậy với \(\forall m\ne0\) thì phương trình (1) có 2 nghiệm phân biệt.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m+1\end{matrix}\right.\)

Ta có \(2x_1-x_2=2\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)-2=3x_2\left(1'\right)\\\left(x_1+x_2\right)+2=3x_1\left(2'\right)\end{matrix}\right.\)

Lấy (1') nhân cho (2') ta được:

\(\left[2\left(x_1+x_2\right)-2\right]\left[\left(x_1+x_2\right)+2\right]=9x_1x_2\)

\(\Rightarrow\left[2.2\left(m-1\right)-2\right]\left[2\left(m-1\right)+2\right]=9\left(-2m+1\right)\)

\(\Leftrightarrow\left(4m-6\right).2m=-18m+9\)

\(\Leftrightarrow8m^2+6m-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{-3}{2}\end{matrix}\right.\)

Thử lại ta có m=3/4 hay m=-3/2

 

A) delta=(4m-2)^2-4×4m^2

=16m^2-8m+4-16m^2

=-8m+4

để pt có hai nghiệm pb thì -8m+4>0

Hay m<1/2

B để ptvn thì -8m+4<0

hay m>1/2