So sánh A và B, biết:
A=(10100+1) : (10101+1)
B=(10101+1) : (10102+1)
Các bạn giải giúp mình, cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)
\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)
\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
So easy
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
Ta có\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{10100}\right)\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
100 số 1
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+\left(1-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}\)
\(A=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
Vậy A<B
Học tôt nha
Cách chứng minh đề sai : Số số phân số là
(10101-3):5+1=\(\frac{10103}{5}\)
ta có: 2 = 1 x 2
6 = 2 x 3
12 = 3 x 4
...
10100 = 100 x 101
=> Số số hạng của dãy 2;6;12;...;10100 là: ( 101 -1) : 1 = 100 ( số hạng)
ta có: \(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}\)
\(A=1+\frac{1}{2}+1+\frac{1}{6}+1+\frac{1}{12}+...+1+\frac{1}{10100}\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\) ( có 100 số 1)
\(A=100+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+\left(1-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101\)
=> A < B
a) \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)
=1-1/2+1/2-1/3+...+1/100-1/101
=1-1/101=100/101
b: \(A=1+\dfrac{1}{2}+1+\dfrac{1}{6}+1+\dfrac{1}{12}+...+1+\dfrac{1}{10100}\)
\(=100+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=101-\dfrac{1}{101}< 101\)
so sánh bằng cách tìm số trung gian nha
B=(10101+1):(10102+1)<(10101+1+9):(10102 +1+9)=(10101+10):(10102+10)=[10.(10100+1]:[10.(10101+)]
=(10100+1):(10101+1)=A
=>A>B