Cho tam giác ABC có AB=AC . M và N lần lượt là trung điểm của AB và AC . Trên cạnh BC lấy điểm D và E sao cho BD=DE=EC .
a. CM ME=ND
b. gọi I là giao điểm của ME và ND . cm tam giác IDE cân .
c.AI vuông góc với BC .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. M là trung điểm của DE, I là trung điểm của BE
=> MI là đường trung bình của tam giác EDB
=> MN = \(\frac{1}{2}\) DB (1)
CMTT ta có
MK = \(\frac{1}{2}\) EC (2)
KN = \(\frac{1}{2}\) BD (3)
IN = \(\frac{1}{2}\) EC (4)
lại có BD = CE (5)
từ 1 2 3 4 5 => MI = MK = KN = NI
=> MINK là hình thoi
a: Xet ΔADE và ΔACB có
góc ADE=góc ACB
góc DAE chung
=>ΔADE đồng dạng với ΔACB
b: Xét ΔIDB và ΔICE có
góc IDB=góc ICE
góc I chung
=>ΔIDB đồng dạng với ΔICE
=>ID/IC=IB/IE
=>ID*IE=IB*IC
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
1: Xet ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc MBD=góc NCE
=.ΔMDB=ΔNEC
=>DM=EN
2: Xét tứ giác MDNE có
MD//NE
MD=NE
=>MDNE là hình bình hành
=>MN cắt DE tại trung điểm của mỗi đường và ME//ND
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)