tìm nghiệm của phương trình chứa dấu giá trị tuyệt đối:
//4x-1/-3/ -/x-5/ =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow-\dfrac{5}{2}< m< 1\)
\(\Delta=\left(m+1\right)^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\\\)
\(\Delta\ge0\Leftrightarrow\left(m-1\right)^2\ge0\forall m\)
Theo hệ thức Vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m\end{matrix}\right.\)
để phương trình có hai nghiệm trái dấu \(\left\{{}\begin{matrix}\Delta\ge0\\x_1x_2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\forall m\\m< 0\end{matrix}\right.\)
Phương trình có hai nghiệm phân biệt khi : \(\Delta^'>0\)
\(\Rightarrow\Delta^'=4-\left(m+1\right)=3-m>0\Leftrightarrow m< 3\)
Ta có theo viet : \(x_1x_2=m+1\)để phương trình có hai nghiệm trái dấu thì : \(x_1x_2=m+1< 0\Leftrightarrow m< -1\)kết hợp điều kiện có : \(m< -1\)
mà :\(x_1=4-\sqrt{3-m};x_2=4+\sqrt{3-m}\)do \(\sqrt{3-m}\ge\forall m< 3\)nên về độ lớn trị tuyệt đối \(x_2>x_1\)
Ta có:
\(x^2-4x+m+1=0\)
Để phương trình có 2 nghiệm thì
\(\Delta=16-4\left(m+1\right)>0\)
<=> \(m< 3\)
=> \(x_1=\frac{4+\sqrt{12-4m}}{2},x_2=\frac{4-\sqrt{12-4m}}{2}\)
Dễ dàng nhận thấy \(x_1>0\)
=> \(x_2< 0\)
=> \(4< \sqrt{12-4m}\)
=> \(16< 12-4m\)
=> \(4m< -4\)
=> \(m< -1\)
( thỏa mã điều kiện m<3)
a: Thay x=5 vào pt, ta được:
25-5m-m-1=0
=>24-6m=0
hay m=4
b: \(\text{Δ}=\left(-m\right)^2-4\left(-m-1\right)\)
\(=m^2+4m+4=\left(m+2\right)^2\)
Để phương trình có hai nghiệm phân biệt thì m+2<>0
hay m<>-2
d: Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}m>0\\-m-1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)
Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)
\(\Leftrightarrow m+1>0\Rightarrow m>-1\)
\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)
Vậy không tồn tại m thỏa mãn yêu cầu đề bài
\(||x+1|-1|=0\)
\(\Rightarrow|x+1|-1=0\)
\(|x+1|=0+1=1\)
\(\Rightarrow x+1=1\)hoặc \(x+1=-1\)
\(x=1-1=0\) \(x=\left(-1\right)-1\)
\(x=-2\)
\(\Rightarrow x\in\left\{0;-2\right\}\)
Ta có || x+1| -1| luôn lớn hơn hoặc bằng 0
Suy ra | x+1| -1= 0
| x+1| = 1
Suy ra: x+1=1 hoặc x+1= -1
x =0 hoặc x = -2