K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BHCD có

O là trung điểm của BC

O là trung điểm của HD

Do đó: BHCD là hình bình hành

 

6 tháng 1 2022

2)kẻ đường thẳng đi qua O và vuông góc với BC đường thẳng là cắt đoạn thẳng AD tại I

 

21 tháng 10 2021

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

DO đó: BHCD là hình bình hành

22 tháng 12 2016

trực tâm ở cạnh nào hay góc nào bạn?

có trực tâm chính xác sẽ làm dễ hơn

22 tháng 12 2016

trực tâm là giao 3 đường cao trong tâm giác mà bạn

 

11 tháng 1 2017

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

14 tháng 8 2018

dễ ẹc!!!!!!!!

14 tháng 8 2018

làm hộ tui với

20 tháng 12 2020

undefined

9 tháng 1 2021

sai rồi

28 tháng 2 2020

a) Tứ giác BHCDBHCD có:

BH//DCBH//DC (do cùng ⊥AC⊥AC)

CH//BDCH//BD (do cùng ⊥AB⊥AB)

⇒BHCD⇒BHCD là hình bình hành (dấu hiệu nhận biết)

b) Do BHCDBHCD là hình bình hành gọi HD∩BC=I⇒IHD∩BC=I⇒I là trung điểm cạnh HD (1)

Gọi HE∩BC=G,ΔBHEHE∩BC=G,ΔBHE có BGBG vừa là đường cao vừa là trung tuyến nên ΔBHEΔBHE cân đỉnh B

⇒GH=GE⇒G⇒GH=GE⇒G là trung điểm cạnh HEHE (2)

Từ (1) và (2) ⇒IG⇒IG là đường trung bình của ΔHEDΔHED

⇒IG//ED⇒BC//ED⇒IG//ED⇒BC//ED (đpcm)

image

28 tháng 2 2020

giúp mk với