rút gọn các biểu thức
(-6).11 / (-11).(-8)
21.(-5) / 25.(-7)
32.9.11 / 12.24.22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{32.9.11}{12.24.22}\) = \(\dfrac{8.4.3.3.11}{3.4.8.3.11.2}\) = \(\dfrac{1}{2}\)
\(\dfrac{32.9.11}{12.24.22}=\dfrac{8.4.3.3.11}{3.4.8.3.11.2}=\dfrac{1}{2}\)
b: \(27D=3^{14}+3^{17}+...+3^{2024}\)
\(\Leftrightarrow26D=3^{2024}-3^{11}\)
hay \(D=\dfrac{3^{2024}-3^{11}}{26}\)
c: \(25E=-5^4-5^6-...-5^{1002}\)
\(\Leftrightarrow24E=-5^{1002}+5^2\)
hay \(E=\dfrac{-5^{1002}+5^2}{24}\)
a) 2x + (-61) - (21 - 61) = 2x - 21 + (61 - 61) = 2x - 21.
b) (- 3 - x + 5) + 3 = (- 3 + 3) + 5 - x = 5 - x.
c) 11- (13 - x) + (13 - 11) = (11- 11) + (13- 13) + x = x
d) 25 - ( 15 - x + 303) + 303 = 25 - 15 + (303 - 303) + x = x + 10
\(C=\dfrac{2^6\cdot3^{10}}{3^9\cdot2^6}=3\\ D=\dfrac{3^{24}\cdot3^{10}}{3^{21}\cdot3^{11}}=\dfrac{3^{34}}{3^{32}}=3^2=9\\ F=\dfrac{2^{45}\cdot5^{14}}{5^{15}\cdot2^{47}}=\dfrac{1}{2^2\cdot5}=\dfrac{1}{20}\\ G=\dfrac{2^2\cdot5^2\cdot5^3}{2^3\cdot5^4}=\dfrac{1\cdot5}{2}=\dfrac{5}{2}\)
C=3
D=9
F=1/20
G=5/2
Em ko giải chi tiết vì nó lâu
Mong thông cảm!
1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)
\(=2+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}-1\)
2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)
\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)
\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)
=3-4=-1
b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)
c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
\(\dfrac{\left(-6\right).11}{\left(-11\right).\left(-8\right)}=\dfrac{\left(-3\right).2.11}{11.2.4}=-\dfrac{3}{4}\)
\(\dfrac{21.\left(-5\right)}{25.\left(-7\right)}=\dfrac{\left(-3\right).\left(-7\right).\left(-5\right)}{\left(-5\right).\left(-5\right).\left(-7\right)}=\dfrac{3}{5}\)
\(\dfrac{32.9.11}{12.24.22}=\dfrac{4.4.2.3.3.11}{3.4.4.2.3.11.2}=\dfrac{4^2.2.3^2.11}{3^2.4^2.2^2.11}=\dfrac{1}{2}\)
\(\dfrac{\left(-6\right).11}{\left(-11\right).\left(-8\right)}\)=\(\dfrac{-3}{4}\)
\(\dfrac{21.\left(-5\right)}{25.\left(-7\right)}\)=\(\dfrac{2}{5}\)
\(\dfrac{32.9.11}{12.24.22}\)=\(\dfrac{1}{2}\)