K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

theo công thức, ta tính đc: 

A = 1- 1/3 + 1/3 - 1/5 + 1/5 -1/7 +..... + 1/49 - 1/51

=> A bằng 1- 1/51 ( các cặp phân số đối nhau thì lược bỏ như - 1/3 và + 1/3 )

4 tháng 4 2016

1-1/3=2/3 chứ ko phải 1-1/3=1/3 đâu nha bạn

2 tháng 2 2015

=1/2.(2/1.3 + 2/3.5 + 2/5.7 +.....+ 2/49.51)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/49-1/51)

=1/2.(1-1/51)

=1/2.50/51

=25/51

2 tháng 2 2015

=1/2.(2/1.3 + 2/3.5 + 2/5.7 +.....+ 2/49.51)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/49-1/51)

=1/2.(1-1/51)

=1/2.50/51

=25/51

20 tháng 8 2016

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\Rightarrow x=\frac{49}{24}\)

\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)

\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\)

\(\frac{24}{49}=\frac{1}{x}\)\(\Rightarrow x=\frac{49}{24}\)

21 tháng 3 2016

2S = 2/1.3+1/3.5+2/5.7+...+2/99.100

2S = 1/1-1/3+1/3-1/5+....+1/99-1/100

2S = 1-1/100

2S = 99/100

S = 99/100:2

S = 99/200

ủng hộ mk nhé

\(\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}+\frac{1}{100}\right)\)

=\(\frac{1}{2}x\frac{1}{100}=\frac{1}{200}\)

vậy S = \(\frac{1}{200}\)

1 tháng 3 2017

Ta có công thức : với n thuộc N* thì ta luôn có :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng vào bài toán ta được :

\(P=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{49.51}\right)+\frac{2}{51}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.......\frac{50^2}{49.51}+\frac{2}{51}\)

\(=\frac{\left(2.3.4...50\right)\left(2.3.4...50\right)}{\left(1.2.3...49\right)\left(3.4.5....51\right)}+\frac{2}{51}\)

\(=\frac{50.2}{51}+\frac{2}{51}=\frac{102}{51}=2\)

8 tháng 7 2021

\(\frac{1}{1.3}+\left|\frac{-1}{3.5}\right|+\left|\frac{-1}{5.7}\right|+...+\left|\frac{-1}{49.51}\right|=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}\left(1-\frac{1}{51}\right)=\frac{1}{2}.\frac{50}{51}=\frac{25}{51}\)

8 tháng 7 2021

    \(\frac{1}{1.3}+\left|-\frac{1}{3.5}\right|+\left|-\frac{1}{5.7}\right|+...+\left|-\frac{1}{49.51}\right|\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49\cdot51}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\frac{50}{51}\)

\(=\frac{25}{51}\)

9 tháng 4 2016

C=\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

C=\(\frac{1}{6}\left\{\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right\}\)=\(\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}+....+\frac{1}{31}-\frac{1}{37}\right)\)

C=\(\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{36}{222}=\frac{6}{37}\)

D=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+......+\frac{3}{49.51}\)

D=\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)

D=\(\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

D=\(\frac{3}{2}\left(1-\frac{1}{51}\right)=\frac{3}{2}.\frac{50}{51}\)

D=\(\frac{150}{102}\)=\(\frac{25}{17}\)

10 tháng 4 2016

a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

Gọi biểu thức trên là A 

5 tháng 8 2017

\(a,=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-0-0-0-...-0-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{4}{8}-\frac{1}{8}\)

\(=\frac{3}{8}\)

\(b,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{49}+\frac{1}{49}-\frac{1}{16}\)

\(=1-0-0-0-...-0-\frac{1}{16}\)

\(=1-\frac{1}{16}\)

\(=\frac{15}{16}\)

\(c,\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\left(1-0-0-0-...-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\frac{50}{51}\)

\(=\frac{25}{17}\)

\(d,\)giống câu a tự làm nha mỏi tay quá.

5 tháng 8 2017

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)

=> \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

=> \(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

\(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{49.52}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{49}-\frac{1}{52}\)

=> \(B=\frac{1}{4}-\frac{1}{52}=\frac{24}{104}=\frac{1}{26}\)