K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

giải theo ptt l8 í 

5 tháng 4 2016

ai mà cha2ngf pt là giải theo pt l8

nhưng mk cần lời giải cụ thể

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

a: Để A là số tự nhiên thì \(\left\{{}\begin{matrix}3n+5⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3+7⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1\in\left\{1;-1;7;-7\right\}\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow n\in\left\{0;3\right\}\)

b: Để B là số nguyên âm thì \(\left\{{}\begin{matrix}4n+1\inƯ\left(10\right)\\n< =-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+1\in\left\{1;-1;5;-5\right\}\\n< =-\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow n=-\dfrac{3}{2}\)

8 tháng 2 2022

Câu a thiếu TH n = -4 nữa á bạn 

NV
2 tháng 1

- Với \(n=0\Rightarrow A=10\) không phải SNT (ktm)

- Với \(n=1\Rightarrow A=3\) là SNT (thỏa mãn)

- Với \(n=2\Rightarrow A=0\) không phải SNT (ktm)

- Với \(n=3\Rightarrow A=7\) là SNT (thỏa mãn)

- Xét với \(n>3\Rightarrow n-2>1\) đồng thời \(n^2>9\)

Ta có: \(\left(n^2+n-5\right)-\left(n-2\right)=n^2-3>0\) (do \(n^2>9>3\))

\(\Rightarrow n^2+n-5>n-2>1\)

\(\Rightarrow A\) có ít nhất 2 ước phân biệt đều lớn hơn 1 nên A không thể là SNT

Vậy \(n=1\) hoặc \(n=3\) thì A là SNT

2 tháng 1

1327

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

Ta có : n^3 - n^2 + n - 1 = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1).
Để n^3 - n^2 + n - 1 là số nguyên tố thì ta có 2 TH :
TH1 : n^2 + 1 = 1 ; n - 1 nguyên tố => không có n thỏa mãn.
TH2 : n^2 + 1 nguyên tố, n - 1 = 1 => n = 2 (chọn)
Vậy n = 2 để n^3 - n^2 + n - 1 nguyên tố