1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
k cho tôi đấy nhá An
Đặt A=\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+..+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>3A=\(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+..+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
+A=\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+..+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
=>4A= 1 - 1/3 + 1/3^2 - 1/3^3 +...+ 1/3^98 - 1/3^99 - 100/3^100
=>4A<1 - 1/3 + 1/3^2 - 1/3^3 +...+ 1/3^98 -1/3^99
=>4A<1-(1/3 -1/3^2+1/3^3-...-1/3^98+1/3^99)
Đặt B=1/3 -1/3^2+1/3^3-...-1/3^98+1/3^99
=>3B=1 - 1/3 +1/3^2 -... - 1/3^97 +1/3^98
=>4B=1+1/3^99>1
=>4B>1
=>B>1/4
=>-B<-1/4
=>1-B<1-1/4
=>4A<1-B<3/4
=>4A<3/4
=>A<3/4 : 4=3/16
=>A<3/16 (đpcm)