Cho hình vuông ABCD cạnh a, E thuộc cạnh BC, F thuộc cạnh AD sao cho: CE=AF. Các đường AE, BF cắt CD theo thứ tự tại M và N.
a) CM: \(CM.DN=a^2\)
b) Gọi MB giao với NA tại K. CM: \(\widehat{MKN}=90\) độ
c) Các điểm E, F có vị trí như thế nào thì MN có độ dài nhỏ nhất
a) Theo hệ quả của định lý Thales ta có:
\(\dfrac{DN}{AB}=\dfrac{AF}{FD};\dfrac{CM}{AB}=\dfrac{CE}{EB}\Rightarrow\dfrac{DN}{AB}.\dfrac{CM}{AB}=\dfrac{AF}{FD}.\dfrac{CE}{EB}=1\Rightarrow DN.CM=a^2\).
b) Do \(CM.DN=a^2=AD.BC\Rightarrow\dfrac{CM}{BC}=\dfrac{AD}{DN}\).
Mà \(\widehat{MCB}=\widehat{ADN}=90^o\Rightarrow\Delta NDA\sim\Delta BCM\left(c.g.c\right)\Rightarrow\widehat{AND}=\widehat{MBC}\Rightarrow\widehat{AND}+\widehat{MCB}=\widehat{MBC}+\widehat{MCB}=90^o\Rightarrow\widehat{MKN}=90^o\).
c) Áp dụng bất đẳng thức AM - GM:
\(DN+CM\ge2\sqrt{DN.CM}=2a\).
Do đó \(MN=DN+DC+CM\ge2a+a=3a\).
Đẳng thức xảy ra khi và chỉ khi DN = CM \(\Leftrightarrow DN=CM=a\)
\(\Leftrightarrow\) E, F lần lượt là trung điểm của BC, DA.