K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

Thay giả thiết vào biểu thức có chứa hạng tử 1 là xong 

6 tháng 4 2016

ngu k chịu đc

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

1 tháng 8 2018

ta có : \(M=\dfrac{1}{abc+ab+a+1}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\)

\(\Leftrightarrow M=\dfrac{abcd}{abcd+abc+ab+a}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{bcd}{bcd+bc+b+1}+\dfrac{1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{bcd+1}{bcd+bc+b+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abcd+bcd}{abcd+bcd+bc+b}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{acd+cd}{acd+cd+c+1}+\dfrac{1}{acb+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{acd+cd+1}{acd+cd+c+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abcd+acd+cd}{abcd+acd+cd+c}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abd+ad+d}{abd+ad+d+1}+\dfrac{1}{abd+ad+d+1}\) \(\Leftrightarrow M=\dfrac{abd+ad+d+1}{abd+ad+d+1}=1\)

NV
9 tháng 1

Ta có:

\(a+b+c-abc=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+c\left(a+b\right)\right)-abc\)

\(=\left(a+b\right)ab+\left(a+b\right)^2c+abc+c^2\left(a+b\right)-abc\)

\(=\left(a+b\right)\left(ab+c^2+c\left(a+b\right)\right)\)

\(=\left(a+b\right)\left(ab+ac+c^2+bc\right)\)

\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Đồng thời:

\(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự:

\(b^2+1=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=\left(a+c\right)\left(b+c\right)\)

Từ đó:

\(P=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}=1\)

29 tháng 7 2018

tớ biết nhưng k nói đâu

8 tháng 2 2020

bằng 1 bn nha!!!

3 tháng 9 2016

Ta có : \(\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{abd}{abcd^2+abcd+abd+ad}+\frac{abcd}{a^2bcd^2+abcd^2+abcd+abd}+\frac{d}{abd+ad+d+1}\)

\(=\frac{ad}{abd+ad+d+1}+\frac{abd}{abd+ad+d+1}+\frac{1}{abd+ad+d+1}+\frac{d}{abd+ad+d+1}\)

\(=\frac{abd+ad+d+1}{abd+ad+d+1}=1\)