tìm nghiệm nguyên của phưng trình:
1) xy=5(x+y)
2) xy=6(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có, hpt
<=>\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{\frac{1}{x}+\frac{1}{y}}=\frac{5}{2}\\\frac{1}{x}-\frac{1}{y}+\frac{1}{\frac{1}{x}-\frac{1}{y}}=\frac{10}{3}\end{cases}}\)
đặt \(\frac{1}{x}+\frac{1}{y}=a;\frac{1}{x}-\frac{1}{y}=b\)
ta có hpt <=>\(\hept{\begin{cases}a+\frac{1}{a}=\frac{5}{2}\\b+\frac{1}{b}=\frac{10}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}2a^2-5a+2=0\\3b^2-10b+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(a-2\right)\left(2a-1\right)=0\\\left(b-3\right)\left(3b-1\right)=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=2\\a=\frac{1}{2}\end{cases}}\\\orbr{\begin{cases}b=3\\b=\frac{1}{3}\end{cases}}\end{cases}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\end{cases}}\\\orbr{\begin{cases}\frac{1}{x}-\frac{1}{y}=3\\\frac{1}{x}-\frac{1}{y}=\frac{1}{3}\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=2\\a=\frac{1}{2}\end{cases}}\\\orbr{\begin{cases}b=3\\b=\frac{1}{3}\end{cases}}\end{cases}}\)đến, đây bạn tự làm nhé, tí nó sẽ ra tổng và hiệu, thì dễ rồi
^_^
vũ tiền châu ơi, có một chỗ bạn bị nhầm:
\(\frac{x-y}{xy}=\frac{1}{y}-\frac{1}{x}\)chứ không phải \(\frac{1}{x}-\frac{1}{y}\)
\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)
Để PT có nghiệm nguyên thì \(\Delta\ge0\)
từ đó tìm được các giá trị nguyên của y, rồi tìm được x