Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC Ở D và cắt đường thẳng vẽ từ C vuông góc với AC tại E
Chứng minh rằng:
a)Tam giác BCE cân
b)AB+AD<CE+CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: BM//EF
EF\(\perp\)AH
Do đó: AH\(\perp\)BM
Xét ΔAMB có
AH là đường cao
AH là đường phân giác
Do đó: ΔAMB cân tại A
b: Xét ΔAFE có
AH vừa là đường cao, vừa là đường phân giác
Do đó: ΔAFE cân tại A
=>AF=AE
Ta có: AF+FM=AM
AE+EB=AB
mà AF=AE và AM=AB
nên FM=EB
Xét ΔCMB có
D là trung điểm của CB
DF//MB
Do đó: F là trung điểm của CM
=>CF=FM
=>CF=FM=EB
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
SUy ra: AF=EC và DF=DC (1)
c: Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC(2)
Từ (1) và (2) suy ra BD⊥CF
Bạn tự vẽ hình nha
a.
Tam giác ABD vuông tại A có: ABD + ADB = 90
Tam giác CED vuông tại C có: CED + EDC = 90
mà ADB = EDC (2 góc đối đỉnh)
=> ABD = CED
mà ABD = CBD (BD là tia phân giác của ABC)
=> CED = CBD
=> Tam giác BEC cân tại C
b.
Tam giác ABC vuông tại A có:
BC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà BC = EC (tam giác BEC cân tại C)
=> EC > AB
=> DE > DB (quan hệ giữa đường xiên và hình chiếu)
c.
CA là đường cao của tam giác MBC
BD là đường cao của tam giác MBC
=> D là trực tâm của tam giác MBC
=> MD là đường cao của tam giác MBC
hay MD _I_ BC
Chúc bạn học tốt
a: XétΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
hay ΔDFC cân tại D
b: Ta có: DE=DA
mà DA<DF
nên DE<DF
a ) Xét \(\Delta AKB\) và \(\Delta AKC\) có :
AK : cạn chung
AB = AC ( gt)
BK = KC ( K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BC\)
b ) Vì :
\(\hept{\begin{cases}EC\perp BC\left(gt\right)\\AK\perp BC\left(cmt\right)\end{cases}}\)
\(\Rightarrow EC//AK\) ( tuef vuông góc đến song song )
d ) Vì \(EC\perp BC\left(gt\right)\)
\(\Rightarrow\widehat{BCE}=90^o\)
Vậy \(\widehat{BCE}=90^o\)