tìm x biết
5/1.6 + 5/6.11 + 5/11.16 + .... + 5/5x+1.5x+6 = 2010/2011
giải cụ thể nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}\)
\(=1-\frac{1}{5x+6}\)
\(=\frac{5x+5}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow5x+5=2010\)
\(\Rightarrow5x=2010-5=2005\)
\(\Rightarrow x=2005:5=401\)
Vậy x=401
\(\frac{5x}{1.6}+\frac{5x}{6.11}+\frac{5x}{11.16}+\frac{5x}{16.21}=\frac{1}{25}\)
\(x\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}\right)=\frac{1}{25}\)
\(x\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}\right)=\frac{1}{25}\)
\(x\left(1-\frac{1}{21}\right)=\frac{1}{25}\)
\(\frac{20}{21}x=\frac{1}{25}\)
\(x=\frac{1}{25}:\frac{20}{21}=.....\)
1-1/6+1/6-1/11+...+1/5x+1-1/5x+6=2005/2006
1-1/5x+6=1-1/2006
5x+6=2006
5x=2000
x=400
\(1-\frac{1}{5x+6}=\frac{2005}{2006}\Leftrightarrow5x+6=2006\Leftrightarrow x=400\)
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2011}\)
\(\Rightarrow5x+6=2011\)
\(\Rightarrow5x=2011-6\)
\(\Rightarrow5x=2005\)
\(\Rightarrow x=401\)
1-1/6+1/6-1/11+....+1/(5x+1)-1/(5x+2)=2010/2011 <=>1-1/(5x+2)=2010/2011 <=>1/2011=1/(5x+2) <=>x=401
\(\dfrac{5x}{1.6}+\dfrac{5x}{6.11}+\dfrac{5x}{11.16}+\dfrac{5x}{16.21}+\dfrac{5x}{21.26}+\dfrac{5x}{26.31}=1\)
\(=x\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\right)=1\)
\(=x\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\right)=1\)
\(=x\left(1-\dfrac{1}{31}\right)=1\)
\(\Rightarrow x=1:\left(1-\dfrac{1}{31}\right)=\dfrac{31}{30}\)
`A=-5/(1.6)-5/(6.11)-5/(11.16)-...-5/(2006.2011)`
`-A=5/(1.6)+5/(6.11)+5/(11.16)+...+5/(2006.2011)`
`-A=1-1/6+1/6-1/11+1/11-1/16+.....+1/2006-1/2011`
`-A=1-1/2011=2010/2011`
`A=-2010/2011`
=> 1 - 1/6 + 1/6 - 1/11 +.......+1/5x+1 - 1/5x+6=2010/2011
=> 1 - 1/5x+6 = 2010/2011
=> 1/5x+6 = 1/2011
=> 5x + 6 = 2011
=> 5x = 2005
=> x = 401(tm)