Có bao nhiêu số có bốn chữ số khác nhau chia hết cho 2 được lập từ các từ số 0, 1, 8, 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các số đó là
+ Do x chia hết cho 4 nên 2 chữ số tận cùng của x phải chia hết cho 4
+ Các bộ 2 chữ số ( được tạo ra từ các số đã cho) và chia hết cho 4 là {20, 40, 12, 52, 72, 24}.
+ Với = 20 ta có 4 cách chọn a; 3 cách chọn b nên có 4.3 = 20 số thỏa mãn trường hợp này
Tương tự khi cd = 40; có 20 số.
+ Với = 12; ta có 3 cách chọn a và 3 cách chọn b nên có 3.3 = 9 số thỏa mãn .
Tương tự khi = 52; 72; 24 mỗi trường hợp có 9 số.
Vậy có 20 + 20 + 9 + 9 + 9 + 9 = 76 số
Chọn B.
Đáp án B
Số cần lập có dạng a b c d ¯
trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6
trong đó d = 0 ; 5
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 0 khi đó a,b,c có 5.5.4 ( a # 0 ) cách chọn và sắp xếp
Theo quy tắc cộng có
A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán
Đáp án B.
Số cần lập có dạng a b c d ¯ trong đó a ; b ; c ; d ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; trong đó d = {0;5}.
TH1: d = 0 khi đó a,b,c có A 6 3 cách chọn và sắp xếp.
TH2: d = 5 khi đó a,b,c có 5.5.4 a ≠ 0 cách chọn và sắp xếp.
Theo quy tắc cộng có A 6 3 + 5 . 5 . 4 = 220 số thỏa mãn yêu cầu bài toán.
Ta có
• TH1.
Mỗi bộ sau đều lập được 6 số: (1;2;3),(1;2;6),(1;3;5),(1;5;6),(2;3;7),(2;6;7),(3;5;7),(5;6;7)
• TH2.
Mỗi bộ sau đều lập được 4 số: (0;1;3);(0;1;6);(0;6;7).
Mỗi bộ sau đều lập được 6 số: (1;2;7);(1;3;6); (3;6;7)
Tóm lại có tất cả 6.8+4.4+6.3=82 số thỏa mãn.
Chọn B.
2:
\(\overline{abcd}\)
d có 1 cách chọn
a có 3 cách chọn
b có 2 cách chọn
c có 1 cách chọn
=>Có 3*2*1*1=6 cách
1: \(\overline{abc}\)
a có 3 cách
b có 3 cách
c có 2 cách
=>Có 3*3*2=18 cách
Chữ số cuối cùng bằng 0, các khả năng với 2 chữ số là
(1;2); (1;8); (4;5); (1;5); (2;4); (4;8).
Chữ số cuối cùng bằng 5, các khả năng xảy ra với 2 chữ số là
(1;0);(4;0);(1;3); (2;8);(3;4).
Hoán vị các bộ 2 chữ số không tồn tại số 0, như vậy có 6.2 + 2 + 3.2 = 20 số.
Chọn B.
Chữ số cuối cùng bằng 0, các khả năng với 2 chữ số hàng trăm và hàng chục là (1;2); (1;8); (4;5); (1;5); (2;4); (4;8).
Chữ số cuối cùng bằng 5, các khả năng xảy ra với 2 chữ số hàng trăm và hàng chục là (1;0);(4;0);(1;3);(2;8);(3;4).
Hoán vị các bộ 2 chữ số không tồn tại số 0, như vậy có 6.2+2+3.2=20 số.
Chọn B.
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8). (0;1),(0;4),(1; 3),(2;5),(3;8)
Trường hợp này có 2!.6=12 số.
Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1; 3),(3;4),(5;8), hoán vị được
2!.3+2=8 số.
Chữ số cuối bằng 4 ta có các bộ (2;0),(2; 3),(3;5),(3;8), hoán vị được 2!.3+1=7 số.
Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1; 3),(2;5),(3;4) hoán vị được 2!.3+2=8 số.
Kết hợp lại ta có 12+8+7+8= 35 số.
Chọn C
Chia hết cho 2 thì cuối phải là số chẵn
1 850 ; 1 580 ; 1 508 ; 1 058 ; 8 150 ; 8 510 ; 5 180 ; 5 810 ; 5 018 ; 5 108
Tổng cộng 10 số.
có 10 số
đúng ko bn