K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CD=CM+MD

nên CD=CA+DB

a: góc OAC+góc OMC=180 độ

=>OACM nội tiếp

b: góc BOM=2*60=120 độ

=>góc BDM=60 độ

=>ΔBMD đều

\(S_{qMB}=\dfrac{pi\cdot R^2\cdot120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)

12 tháng 5 2023

giúp em câu b,c với ạ 

 

28 tháng 5 2021

CHO NỬA ĐƯỜNG TRÒN (O;R) ĐƯỜNG KÍNH AB. TỪ A VÀ B KẺ HAI TIẾP TUYẾN AX VÀ BY VỚI NỬA ĐƯỜNG TRÒN . QUA ĐIỂM M BẤT KÌ THUỘC NỬA ĐƯỜNG TRÒN KẺ TIẾP TUYẾN THỨ BA CẮT AX ,BY LẦN LƯỢT TẠI E VÀ F . NỐI AM CẮT OE TẠI P, NỐI BM CẮT OF TẠI Q. HẠ MH VUÔNG GÓC VỚI AB TẠI HA, CHỨNG MINH…

 

20 tháng 12 2021

b: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=AC+BD

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

OC là phân giác của \(\widehat{AOM}\)

nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

Ta có: OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)

b: Xét tứ giác BDMO có

\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)

=>BDMO là tứ giác nội tiếp đường tròn đường kính OD

=>B,D,M,O cùng nằm trên đường tròn đường kính OD

Bán kính là \(R'=\dfrac{OD}{2}\)

c: Ta có: CD=CM+MD

mà CM=CA 

và DM=DB

nên CD=CA+DB

d,e: Gọi N là trung điểm của CD

Xét hình thang ABDC có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

Ta có: ON//AC

AC\(\perp\)AB

Do đó: ON\(\perp\)AB

Ta có: ΔCOD vuông tại O

=>ΔCDO nội tiếp đường tròn đường kính CD

=>ΔCOD nội tiếp (N)

Xét (N) có

NO là bán kính 

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)

f: Xét ΔNCA và ΔNBD có

\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)

\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)

Do đó: ΔNCA đồng dạng với ΔNBD

=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)

Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)

nên MN//AC

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC

 

19 tháng 10

c ơi c làm dc chưa ạ? e cũng đang cần bài này ạ

 

a: góc EAO+góc EMO=180 độ

=>EAOM nội tiếp

b: góc AMB=1/2*sđ cung AB=90 độ

Xét (O) co

EM,EA là tiếptuyến

=>EM=EA

mà OM=OA

nên OE là trung trực của AM

=>OE vuông góc AM tại P

Xét (O) có

FM,FB là tiếptuyến

=>FM=FB

=>OF là trung trực của MB

=>OF vuông góc MB tại Q

góc MPO=góc MQO=góc PMQ=90 độ

=>MPOQ là hình chữ nhật