\(\frac{2X3X4}{2X3X4X5}\)= ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/7x7/3=1
3/7:7/3=1
2/3x1/6x9/11=2/3/54/11=36/11
2x3x4 trên 2x3x4x5=1/5
mk chắc chắn, cho mk nha, kb nhé
\(\frac{2}{3}.\frac{4}{7}=\frac{8}{21}\)
\(\frac{3}{11}.2=\frac{6}{11}\)
\(4.\frac{2}{7}=\frac{8}{7}\)
\(\frac{8}{21}:\frac{2}{3}=\frac{8}{21}.\frac{3}{2}=\frac{21}{2.21}=\frac{1}{2}\)
\(\frac{3}{7}.\frac{7}{3}=\frac{21}{21}=1\)
\(\frac{3}{7}:\frac{3}{7}=\frac{3}{7}.\frac{7}{3}=\frac{21}{21}=1\)
lỡ tay bấm gửi trả lời luôn
\(\frac{2}{3}.\frac{1}{6}.\frac{9}{11}=\frac{2.9}{18.11}=\frac{2.9}{2.9.11}=\frac{1}{11}\)
\(\frac{2.3.4}{2.3.4.5}=\frac{6.4}{6.4.5}=\frac{24}{24.5}=\frac{1}{5}\)
\(\text{Cách 1}\)
\(\frac{1.2.3.4}{2.3.4.5}\)
\(=\frac{24}{120}\)
\(=\frac{1}{5}\)
\(\text{Cách 2}\)
\(\text{Ta thấy tử và mẫu có các chữ số giống nhau: 2;3;4}\)
\(\text{Vì vậy gạch tất cả các chữ số đó của tử và mẫu}\)
\(\text{Nên số còn lại của tử là 1 ; số còn lại của mẫu là 5 Nên phân số đó bằng }\frac{1}{5}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{90}\)
\(=\frac{22}{45}\)
Gọi tổng trên là S , ta có :
S = 1/1.2.3 + 1/2.3.4 + ... + 1/8.9.10
S.2 = 2/1.2.3 + 1/2.3.4 + ... + 1/8.9.10
S.2 = 3 -1 /1.2.3 + 4 - 2/2.3.4 + ... + 10 - 8/8.9.10
S.2= 3/1.2.3 - 1/1.2.3 + 4/2.3.4 - 2/2.3.4 + ... + 10/8.9.10 - 8 /8.9.10
S.2 =1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/8.9 - 1/9.10
S.2 = 1/2 - 1/90
S = 1/4 - 1/360
S= 89/360
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{48.49.50}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}=\frac{612}{2450}=\frac{306}{1225}\)
Do not ask why hay quá!
Đặt \(T=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\);\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\);. . . ; \(\frac{1}{48.49}-\frac{1}{49.50}=\frac{1}{48.49.50}\)
Rút ra dạng tổng quát,ta có: (mình nói thêm nhé)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
Ta nhận thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\);.....
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}\)
\(\Rightarrow T=\frac{612}{\frac{1225}{2}}=\frac{306}{1225}\)
Vậy .. . .
Trả lời:
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2018.2019.2020}+\frac{1}{2.2019.2020}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2018.2019.2020}+\frac{2}{2.2019.2020}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}+\frac{1}{2019.2020}\right)\)
\(A=\frac{1}{2}.\frac{1}{1.2}\)
\(A=\frac{1}{4}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.......+\frac{1}{8.9.10}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+......+\frac{2}{8.9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+.......+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(\frac{2\text{x}3\text{x}4}{2\text{x}3\text{x}4\text{x}5}=\frac{24}{24\text{x}5}=\frac{1}{5}\)
k mk nha minh hiền
ĐS : 1/5