cho tam giác ABC, AB=AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=BE. Chứng minh a) tam giác ADE cân b) tam giác ABD= tam giác ACE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : ΔABC có AB = AC
⇒ ΔABC là tam giác cân
⇒ ∠B = ∠C = 180 - ∠A/2
Xét ΔADC và ΔAEB có :
DC = BE ( DB+BC = EC+CB )
∠ACD = ∠ABE ( chứng minh trên )
AC = AB
⇒ ΔADC = ΔAEB (c.g.c)
⇒ AD = AE ( 2 cạnh tương ứng )
b, Ta có : ∠ABD + ∠ABC = 180 ( 2 góc kề bù )
∠ACB + ∠ACE = 180 ( 2 góc kề bù )
Mà ∠ABC = ∠ACB
⇒ ∠ABD = ∠ACE
Xét ΔABD và ΔACE có :
AB = AD
∠ABD = ∠ACE
BD = CE
⇒ ΔABD = ΔACE (c.g.c)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
tam giác ABC cân tại A-->góc ABC=góc ACB (đ/lí tam giác cân)
góc ACE+góc ACB=180 độ (kề bù)
góc ABD+góc ABC=180 độ (kề bù)
mà góc ABC=góc ACB (cmt)
-->góc ACE=góc ABD (bắc cầu)
xét tam giác ABD và tam giác ACE có:
+AB=AC(gt)
+BD=CE(gt)
+góc ABD=góc ACE(cmt)
vậy tam giác ABD=tam giác ACE(cgc)
suy ra AD=AE
AD=AE(cmt)-->tam giác ADE cân tại A
thank you!Thanks for ticking me! I didn't expect I was right, I also think you will tick later like everyone else! I didn't expect you to tick early>))
Bài 8:
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
b: ta có: ΔABD=ΔACE
nên \(\widehat{ADB}=\widehat{AEC}\)
a, Vì tam giác ABC cân tại A
=> AB=AC, gócABC=gócACB
=> gócABD=gócACE
Xét tam giác ABD và tam giác ACE có
AB=AC, gócABD=gócACE, BD=CE
=> tam giác ABD = tam giác ACE (c-g-c)
=> gócCAE=gócBAD
b, Xét tam giác AMC và tam giác AFB có
gócAMC=gócAFB=90o, AC=AB, gócCAE=gócBAD
=> tam giác AMC = tam giác AFB (cạnh huyền góc nhọn)
=> AM=AF
=> tam giác AMF cân tại A
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
DO đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Ta có: DE=DB+BC+CE
nên DE=AB+BC+AC=CABC
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM vuông góc DE
nên AM là phân giác của góc DAE
d: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
a: Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABD}=\widehat{ACE}\)
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A