Cho tam giácABC có các trung tuyến AM, BN gặp nhau tại G. Trên tia đối của tia MA lấy điểm K sao cho MK=MG.
a) CM:GK= AG.
b) CM: tam giác BMK= tam giác CMG.
c)Trên tia đối của tia MA lấy điểm Q sao cho MQ= AM và trên tia đối của tia NB lấy điểm I sao cho NI= BN. Chứng minh rằng ba điểm Q,C,I thẳng hàng.
Tam giác ABC có: G là giao điểm của trung tuyến AM và BN (gt)
=> G là trọng tâm tam giác ABC
=>GM = 1/2 GA (đ/lí 3 trung tuyến của tam giác) (1)
Có GM = MK (gt)
Mà GM + MK = GK
=> GM = MK = 1/2 GK (2)
Từ (1)(2) => GA = GK
b, Xét tam giác BMK và tam giác CMG
BM = CM (gt)
góc BMK = góc CMG (đối đỉnh)
MK = MG (gt)
=> tam giác BMK = tam giác CMG (c.g.c)
c, Xét tam giác ABM và tam giác QCM
MA = QM (gt)
góc AMB = góc QMC ( đối đỉnh)
MB = MC (gt)
=> tam giác ABM = tam giác QCM(c.g.c)
=> góc BAQ = góc CQA ( cặp góc tương ứng)
=> AB // QC ( vì góc BAQ và góc CQA là 2 góc so le trong (3)
Xét tam giác BAN và tam giác ICN
BN = NI (gt)
góc BNA = góc INC (đối đỉnh)
AN = CN (gt)
=> tam giác BAN = tam giác ICN (c.g.c)
=> góc BAN = góc ICN (cặp góc tương ứng)
=> AB // CI (vì góc BAN và góc ICN là 2 góc so le trong) (4)
Từ (3)(4) => Q, C, I thẳng hàng