giải phương trình
\(\frac{x-3}{6}+\frac{1-x^2}{4}=\frac{5x-3}{12}-\frac{2x^2+1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{6x^2+3}{24}-\frac{10x-4}{24}=\frac{6x^2-6}{24}-\frac{4x-12}{24}\)
\(\Leftrightarrow\frac{6x^2+3-10x+4}{24}=\frac{6x^2-6-4x+12}{24}\)
\(\Leftrightarrow6x^2-10x+7=6x^2-4x+6\)
\(\Leftrightarrow-6x+1=0\)
\(\Rightarrow-6x=-1\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
a) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=x+\frac{7}{12}\)
\(\frac{3.3\left(2x+1\right)}{12}-\frac{2\left(5x+3\right)}{12}+\frac{4\left(x+1\right)}{12}=\frac{12x+7}{12}\)
\(18x+9-10x-6+4x+4=12x+7\)
\(0x=0\) ( vô số nghiệm )
Vậy x \(\in\)R
b) ĐKXĐ : x \(\ne\)-1;-3;-5;-7
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)
\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)
\(\left(x+1\right)\left(x+7\right)=16\)
Ta thấy x+1 và x+7 là 2 số cách nhau 6 đơn vị . Mà x + 1 < x + 7
\(\Rightarrow\)\(\hept{\begin{cases}x+1=2\\x+7=8\end{cases}\Rightarrow x=1}\)
hoặc \(\hept{\begin{cases}x+1=-2\\x+7=-8\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=-15\end{cases}}\)( loại )
Vậy x = 1
a,\(\frac{2x+5}{3}-2=\frac{3x-7}{5}\)
\(\Rightarrow5\left(2x+5\right)-30=3\left(3x-7\right)\)
\(\Leftrightarrow10x+25-30=9x-27\)
\(\Leftrightarrow x=-22\)
vậy....................
\(b,\frac{x}{6}+x=\frac{2x+1}{2}\)
\(\Rightarrow2x+12x=6\left(2x+1\right)\)
\(\Leftrightarrow14x=12x+6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy.....................
c,\(\frac{x}{4}-\frac{2x-1}{3}=-\frac{5x}{12}\)
\(\Rightarrow3x-4\left(2x-1\right)=-5x\)
\(\Leftrightarrow3x-8x+4=-5x\)
\(\Leftrightarrow0x=-4\left(PTVN\right)\)
VẬY................
P/s : bạn chú ý \(\Rightarrow\)với \(\Leftrightarrow\)nha
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
a, \(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)
\(\frac{12x}{12}-\frac{2\left(5x+2\right)}{12}=\frac{3\left(7-3x\right)}{12}\)
\(12x-10x-4=21-9x\)
\(11x=25\)
\(x=\frac{24}{11}\)
\(b,\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\frac{10x+3}{12}=\frac{15+8x}{9}\)
\(9\left(10x+3\right)=12\left(15+8x\right)\)
\(3\left(10x+3\right)=4\left(8x+15\right)\)
\(30x+9=32x+60\)
\(-2x=51\)
\(x=-\frac{51}{2}\)
\(c,\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\frac{2x}{6}-\frac{3\left(2x+1\right)}{6}=\frac{x-6x}{6}\)
\(2x-6x-3=x-6x\)
\(x=3\)
P/s: Bn xem lại đề bài phần d nha!
=.= hk tốt!!