nếu A = B : 0,1 vàA - B = 17,973 thì B = bao nhiêu ( trình bày rõ ràng giúp mình nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,bc.3=m2,bn
\(\frac{m2,bn}{3}=a,bc\)
m khong chia duoc cho 3=> m2 chia 3 =a
m khac 2 khac 0=> m=1=> a=4
b chia cho 3 =b => b=9 hoac 0
n chia cho 3=c vay n=3, 9 hoac 6 voi n=3=> c=1 (loai vi co m=1);
n=6 => c=2 (loai)
vay n=9=> c=3
KL
a=4; b=0; c=3; m=1; n=9
thu lai
4,03x3=12,09
aaaaa96 chia hết cho 3 và 8
aaaaa96 chia hết cho 3 vì 96 chia hết cho 3 => a x 5 chia hết cho 3 => a = 3;6;9
aaaaa96 chia hết cho 8 suy ra a96 chia hết cho 8
Nếu a = 3 => 396 : 8 không chia hết cho 8 (loại)
Nếu a = 6 => 696 : 8 chia hết cho 8
Nếu a = 9 => 996 : 8 không chia hết cho 8
Vậy a = 6
\(B=x^2-x\)
\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Bmin = 1/4 <=> x = 1/2
P.s : đây là tìm B min
Còn cách nữa tìm Bmax :v
Vì \(x^2\ge0\forall x\)
\(\Rightarrow B\le x\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy Bmax = 0 <=> x = 0
\(\dfrac{2}{5}< \dfrac{3}{7}\)
\(\dfrac{2}{7}< \dfrac{4}{9}\)
\(\dfrac{5}{8}< \dfrac{8}{5}\)
\(\dfrac{11}{18}< \dfrac{5}{6}\)
\(\dfrac{7}{8}< \dfrac{11}{12}\)
#)Giải :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\left(#\right)\)
Thay vào VP, ta được :
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
Lại có :
\(\frac{a^2+b^2}{c^2+d^2}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow a^2d^2=b^2c^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
Tiếp tục thay (#) vào, ta được :
\(\left(\frac{bk+b}{dk+d}\right)^2=\left(\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}\right)^2=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)\(=\frac{a^2+b^2}{c^2+d^2}\)\(\left(1\right)\)
Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{a}{c}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)\(\RightarrowĐPCM\)