GTLN của \(-x+\sqrt{x}-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(2A=2\sqrt{x-2}+4\sqrt{x+1}+4038-2x\) (Đk:\(x\ge2\))
\(2A=-\left[\left(x-2\right)-2\sqrt{x-2}+1\right]-\left[\left(x+1\right)-4\sqrt{x+1}+2\right]+4042\)
\(2A=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4042\le4042\)
\(\Leftrightarrow A\le2021\)
\(\Rightarrow Amax=2021\) khi x=3 (tm)Tự đăng câu hỏi xong tự trả lời (T-T)
Đặt A=\(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+2}\)\(\Rightarrow Ax+A\sqrt{x}+2A-\sqrt{x}+1=0\)
\(\Leftrightarrow Ax+\sqrt{x}\left(A-1\right)+2A+1=0\)
\(\Delta=\left(A-1\right)^2-4A\left(2A+1\right)=A^2-2A+1-8A^2-4A\)\(=-7A^2-6A+1\ge0\)
\(\Rightarrow-1\le A\le\dfrac{1}{7}\)
Vậy Max A là \(\dfrac{1}{7}\)
Dâu"=" xảy ra \(\Leftrightarrow A=\dfrac{1}{7}\)
\(\Leftrightarrow7\sqrt{x}-7=x+\sqrt{x}+2\)
\(\Leftrightarrow x-6\sqrt{x}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\Leftrightarrow x=9\)
1.
\(2P=2\sqrt{x-2}+4\sqrt{x+1}-2x+4016\)
\(=-\left(x-2-2\sqrt{x-2}+1\right)-\left(x+1-4\sqrt{x+1}+4\right)+4020\)
\(=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4020\)
2.
\(\sqrt{u}+\sqrt{v}=7\Rightarrow u+v+2\sqrt{uv}=49\)
\(\Rightarrow u+v+2\sqrt{6}=49\Rightarrow u+v=49-2\sqrt{6}\)
\(\Rightarrow\left|u-v\right|=\sqrt{\left(u-v\right)^2}=\sqrt{\left(u+v\right)^2-4uv}=\sqrt{\left(49-2\sqrt{6}\right)^2-4.6}=...\)
3.
\(\left(a-2\right)^2+\left(b-1\right)^2=545\)
\(P=23\left(a-2\right)+4\left(b-1\right)+2063\)
\(\Rightarrow\left(P-2063\right)^2=\left[23\left(a-2\right)+4\left(b-1\right)\right]^2\le\left(23^2+4^2\right)\left[\left(a-2\right)^2+\left(b-1\right)^2\right]\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
\(A=\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{(\sqrt{x}-1)^2}{2}-\frac{\sqrt{x}+2}{(\sqrt{x}-1)^2}.\frac{(\sqrt{x}-1)^2}{2}\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{2(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{2}=\frac{(\sqrt{x}-2)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}+1)}{2(\sqrt{x}+1)}=\frac{-6\sqrt{x}}{2(\sqrt{x}+2)}=\frac{-3\sqrt{x}}{\sqrt{x}+2}\)
Vì $x\geq 0$ nên $3\sqrt{x}\geq 0; \sqrt{x}+2>0$
$\Rightarrow \frac{3\sqrt{x}}{\sqrt{x}+2}\geq 0$
$\Rightarrow A\leq 0$ hay $A_{\max}=0$ khi $x=0$
\(A=\dfrac{2\sqrt{x}+1-\sqrt{x}}{2\sqrt{x}+1}=1-\dfrac{\sqrt{x}}{2\sqrt{x}+1}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\2\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{2\sqrt{x}+1}\ge0\)
\(\Rightarrow A\le1\)
\(A_{max}=1\) khi \(x=0\)
\(ĐKXĐ:x\ge0\)
\(-x+\sqrt{x}-2=-x+\sqrt{x}-\frac{1}{4}-\frac{7}{4}=-\left(x-\sqrt{x}+\frac{1}{4}\right)-\frac{7}{4}\)
\(-\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{7}{4}\). Vì \(-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\forall x\ge0\)
\(\Leftrightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\forall x\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(TMĐK\right)\). Vậy .............