Giúp mk gấp với mọi người ơi:
\(A=\frac{8n+193}{4n+3}\)
tìm n để a tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ tìm số tự nhiên \(n\)để \(A\)không là phân số tối giản.
\(A=\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\) không tối giản khi \(\frac{187}{4n+3}\)không tối giản
\(4n+3\inƯ\left(187\right)=\left\{1,11,17,187\right\}\).
Xét bảng:
4n+3 | 1 | 11 | 17 | 187 |
n | -1/2 (loại) | 2 (tm) | 7/2 (loại) | 46 (tm) |
Vậy \(n\notin\left\{2,46\right\}\)thì \(A\)là phân số tối giản.
A=\(\frac{8n+193}{4n+3}=\frac{4n+6+187}{4n+3}\)
=\(\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A tối giản thì \(187⋮4n+3\)
=> \(4n+3\inƯ\left(187\right)=\left\{11,17,187,1\right\}\)
TH1: 4n + 3 = 11 => 4n = 11 - 3 = 8
=> n = \(\frac{8}{4}=2\)(TMĐK)
TH2: 4n + 3 = 17 => 4n = 17 - 3
= 14 (loại) vì 14 không chia hết cho 4
TH3: 4n + 3 = 1 => 4n = 1 - 3
= -2 (loại ) vì \(\frac{-2}{4}\)không phải là số tự nhiên
TH4: 4n + 3 = 187 => 4n = 187 - 3 = 184
=> n = \(\frac{184}{4}=36\)(TMĐK)
Vậy n = 36 hoặc 2 thì A tối giản
Chúc bạn học tốt !
Gọi ƯCLN(8n + 193;4n + 3) = d
Suy ra: (8n + 193;4n + 3) chia hết cho d . Suy ra: (8n + 193) - 2.(4n + 3)
Suy ra: (8n + 193) - (8n + 6) chia hết cho d
Suy ra: 187 chia hết cho d mà A là phân số tối giản suy ra A khác 187
Suy ra: n khác 11k + 2(k thuộc N)
Suy ra: n khác 17m + 12(m thuộc N)
Để A tối giản thì:
(8n + 193, 4n + 3) = 1
Gọi d là ƯC nguyên tố của 8n + 193 và 4n + 3
=> 8n + 193 - 4n - 3 chia hết cho d
=> 4n + 190 chia hết cho d
=> 4n + 3 + 187 chia hết cho d
=> 187 chia hết cho d
Mà d nguyên tố => d = 11 hoặc d = 17
+) Tìm a để 8n + 193 chia hết cho 11, 4n + 3 chia hết cho 11
Vì 8n + 193 = 2.(4n + 3) + 187 nên 4n + 3 chia hết cho 11 thì 8n + 193 chia hết cho 11
=> 4n + 3 = 11k (k thuộc N) => 4n = 11k - 3 => n = \(\frac{11k-3}{4}\)
+) Tìm a để 8n + 193 chia hết cho 17, 4n + 3 chia hết cho 17
Vì 8n + 193 = 2.(4n + 3) + 187 nên 4n + 3 chia hết cho 17 thì 8n + 193 chia hết cho 17
=> 4n + 3 = 17k (k thuộc N) => 4n = 17 - 3 => n = \(\frac{17k-3}{4}\)
Vậy n \(\ne\frac{11k-3}{4}\) và n \(\ne\frac{17k-3}{4}\) thì A tối giản.
\(A=\frac{8n+193}{4n+3}\)
\(=\frac{8n+6+187}{4n+3}\)
\(=\frac{2\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Đến chỗ này chắc bạn làm tiếp được
\(\frac{8n+193}{4n+3}\)
\(=\frac{\left(4+4\right)n+190+3}{4n+3}\)
\(=\frac{4n+3+4+190}{4n+3}\)
\(=\frac{4n+3}{4n+3}+\frac{194}{4n+3}\)
Suy ra 4n + 3 thuộc ước của 194
Còn lại bn tự làm nha
a)
\(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
\(\Rightarrow4n+3\in U\left(187\right)=1;11;17;187\)
4n+3 | 1 | 11 | 17 | 187 |
n | \(-\frac{1}{2}\) | 2 | \(\frac{7}{2}\) | 46 |
\(\Rightarrow n\in2;46\)
b)
Để A tối giản thì 187 không chhia hết cho 4n+3
\(\Rightarrow4n+3\ne4.11k+11;4n+3\ne4.17h+51\)
\(\Rightarrow n\ne11k+2;n\ne17h+12\)
a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A nguyên => \(\frac{187}{4n+3}\inℤ\)
=> \(4n+3\inƯ\left(187\right)\)
Đến đây bạn tự giải tiếp nha.
A là tối giản khi 187 và 4n + 3 có UCLN bằng 1
Vì 187 = 11.17
Giả sử n=11k + r (với 0<=r <=10) => 4n+3 =44k + (4r +3)
mà (11,4n+3) =1 => 4r+ 3 #11p với 11p =11,22,33
(do 4n+3 nguyên tố cùng nhau với 11 nên số dư phải khác bội số của 11
Mà (11, 4)=1 => p khác số chia 4 dư 3 là số 11 => 4r+3 # 11
=> r# 2
=> n # 11k + 2 (k thuộc N)
Giả sử n= 17k + r => 4n+3= 68k + (4r+3)
mà (17,4n+3) = 1 => 4r + 3 # 17p, với 17p=17,34,51,68...(hơi dài, để nghĩ thêm..)
Mà (17,4)=1 =>p khác số chia 17 dư 3 là số 51
=> 4r+ 3# 51
=> r#12
=> n # 17m+ 12
dùng ( a,b)=1 => (a,a-b)=1
để A tối giản thì ước của 2 cái kia =1
mà 8n+193 là lẻ nên (8n+193.8n+6)=1
áp dụng cái trên..... ko lm đc nhắn tin cho tôi
năng cao và phát triển toán 6 có đáy,,,,,đoán tek,,,