K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

Ta có: \(a\ge0,b\ge0,c\ge0\)

=>\(a+b+c\ge0\)

=>\(a+b\ge-c\)

=>\(\left(a+b\right)^3\ge\left(-c\right)^3\)

=>\(a^3+3a^2b+3ab^2+b^3\ge-c^3\)

=>\(a^3+b^3+3.ab.\left(a+b\right)-\left(-c^3\right)\ge0\)

=>\(a^3+b^3+c^3\ge-3ab.\left(a+b\right)\)

Vì a+b=-c

=>\(a^3+b^3+c^3\ge-3ab.\left(-c\right)\)

=>\(a^3+b^3+c^3\ge3abc\)

=>ĐPCM

15 tháng 4 2016

Mình nhầm chỗ:

Vì \(a+b\ge-c\)

=>\(a^3+b^3+c^3\ge-3ab.\left(a+b\right)\ge-3ab.\left(-c\right)\)

12 tháng 2 2017

a3+b3+c3 - 3abc >= 0 

<=>(a+b+c)(a2+b2+c2-ab-bc-ca) >= 0 

bn tự c/m ngoặc thứ 2 >= 0 (nhân 2 vào),có a+b+c >= 0 ->đpcm

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

22 tháng 7 2018

Áp dụng bất đẳng thức Cô - Si ta có :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu " = " xảy ra khi a = b = c .

25 tháng 9 2016

Áp dụng Bđt Cô si 3 số dương ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Đẳng thức xảy ra khi \(a=b=c\)

Đpcm

9 tháng 7 2018

Áp dụng bđt cô si dạng engel cho 3 số dương:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Vậy đẳng thức chỉ xảy ra khi a = b = c

Chúc bạn học tốt!

9 tháng 7 2018

Câu hỏi của Pé Ken - Toán lớp 8 - Học toán với OnlineMath tham khảo

25 tháng 2 2020

C1 : Áp dụng BĐT Cô - si cho 3 số không âm ta được :

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

C2 : Sử dụng biến đổi tương đương :

Ta có :\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) ( luôn đúng )

Do đó có : \(a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

25 tháng 2 2020

Xét hiệu \(a^3+b^3+c^3-3abc\) ta có:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)

Vì \(a,b,c\ge0\)\(\Rightarrow a+b+c\ge0\)

mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)

hay \(a^3+b^3+c^3-3abc\ge0\)\(\Rightarrow a^3+b^3+c^3\ge3abc\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b=c=0\\a=b=c\end{cases}}\)\(\Leftrightarrow a=b=c\ge0\)

16 tháng 11 2015

Ta có: \(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vì \(\left(a+b+c\right)^3\) \(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)nên \(\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\Leftrightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(đpcm\right)\)

5 tháng 6 2017

a) Ta có:

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)

Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)

(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c

b) Ta có: \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2\)

\(\Leftrightarrow\) \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ac-2bc-2ab=0\)

\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)

(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c

c. Ta có: \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3ab+3bc+3ac\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac=0\)

\(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\) \(\left(a^2-2bc+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)

(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c

Chúc bạn học tốt haha

5 tháng 6 2017

Học tại nhà - Toán - Bài 7: CMR: a = b = c nếu có 1 trong các điều kiện sau:1/ a2 + b2 + c2 = ab + bc + ca.2/ (a + b + c)2 = 3(a2 + b2 + c2)3/ (a + b + c)2 = 3 (ab + bc + ca).