Cho tam giác ABC nhọn, có AD là phân giác góc A. Trên AB lấy M, AC lấy N sao cho BM = CN. BN giao CM tại O. Từ O kẻ đường thẳng song song với AD cắt AB tại E và AC tại F. Chứng minh rằng AB = CF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hhi sr nha chị rep hơi muộn
Ta có :
AFE =OFC(2 góc đối đỉnh)
Mà ta lại có: OF//AD(gt)
nên OFC=DAC(2 góc đồng vị )
và OF//AD nên BAD=BEO(2 góc đồng vị )
Mặt khác AD là tia phân giác của BAC nên BAD=DAC
từ đó ta có BEO=AFE
hay tam giác AEF cân tại A tức AE=AF
Xét AB+AC=AB+AE+AC-AE=AB+AE+AC-AF
=EB+FC
Sửa đề △ABC có ^CAB = 120o thì mới chứng minh △DEF đều được.
a, Xét △FDA vuông tại F và △EDA vuông tại E
Có: DA là cạnh chung
^FAD = ^EAD (gt)
=> △FDA = △EDA (ch-gn)
=> DF = DE (2 cạnh tương ứng)
=> △DEF cân tại D (1)
Vì AD là phân giác ^CAB => ^CAD = ^BAD = ^CAB : 2 = 120o : 2 = 60o
Xét △FAD vuông tại F có: ^FAD + ^FDA = 90o (tổng 2 góc nhọn trong tam giác vuông)
=> 60o + ^FDA = 90o => ^FDA = 30o
Mà ^FDA = ^EDA (△FDA = △EDA) => ^EDA = 30o
Ta có: ^FDE = ^FDA + ^EDA = 30o + 30o = 60o (2)
Từ (1) và (2) => △DEF đều
b, Ta có: AI = AF + FI và AK = AE + EK
Mà AF = AE (△FDA = △EDA) ; FI = EK (gt)
=> AI = AK
Xét △IAD và △KAD
Có: AI = AK (cmt)
^IAD = ^KAD (gt)
AD là cạnh chung
=> △IAD = △KAD (c.g.c)
=> ID = KD (2 cạnh tương ứng)
=> △IDK cân tại D
c, AD // CM (gt) => ^DAB = ^CMB (2 góc đồng vị)
Mà ^DAB = 60o => ^CMB = 60o => ^CMA = 60o (3)
Ta có: ^CAM + ^CAB = 180o (2 góc kề bù)
=> ^CAM + 120o = 180o => ^CAM = 60o (4)
Từ (3) , (4) => ^CMA = ^CAM => △CMA cân tại C mà ^CMA = 60o => △MAC đều
=> AC = AM = MC
Vì △ vuông FAD có: ^FDA = 30o (cmt)
=> AD = 2 . AF
=> AD = 2 . (AC - CF)
=> AD = 2 . (CM - CF) = 2 . (m - n)
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)