K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
16 tháng 1 2022

ta có bất phương trình tương đương :

\(1\le\left(2-m\right)x\)

với \(m=2\) BPT vô nghiệm

với \(m< 2\Rightarrow BPT\Leftrightarrow x\ge\frac{1}{2-m}\)

với \(m>2\Rightarrow BPT\Leftrightarrow x\le\frac{1}{2-m}\)

14 tháng 2 2022

làm thì làm tử tế đéo làm thì biến, địtt cụ mày

 

NV
14 tháng 2 2022

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

- Với \(x=-\dfrac{3}{2}\) là nghiệm của BPT

- Với \(x>-\dfrac{3}{2}\Rightarrow2x+3>0\)

\(\Rightarrow\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\)

\(\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\le1\)

\(\Rightarrow3\left(2x-3\right)\le\sqrt{3x^2-3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3< 0\\\left\{{}\begin{matrix}2x-3\ge0\\9\left(2x-3\right)^2\le3x^2-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\11x^2-36x+28\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{14}{11}\le x\le2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\dfrac{3}{2}\le x\le2\end{matrix}\right.\) \(\Rightarrow-\dfrac{3}{2}< x\le2\)

Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< -1\\1< x\le2\end{matrix}\right.\)

- Với \(x< -\dfrac{3}{2}\Rightarrow2x+3< 0\)

\(\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\ge1\)

\(\Rightarrow3\left(2x-3\right)\ge\sqrt{3x^2-3}\)

Do \(x< -\dfrac{3}{2}\Rightarrow3\left(2x-3\right)< 0\Rightarrow\) BPT vô nghiệm

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}-\dfrac{3}{2}\le x< -1\\1< x\le2\end{matrix}\right.\)

16 tháng 2 2023

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

(mx-2)(2mx-x+1)=0

=>\(x^2\cdot2m^2-mx^2+mx-4mx+2x-2=0\)

=>\(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)

TH1: m=0

Phương trình sẽ trở thành: \(0x^2+x\cdot\left(-3\cdot0+2\right)-2=0\)

=>2x-2=0

=>x=1

TH2: m=1/2

Phương trình sẽ trở thành: \(0x^2+x\left(-3\cdot\dfrac{1}{2}+2\right)-2=0\)

=>1/2x-2=0

=>x=4

TH3: \(m\notin\left\{0;\dfrac{1}{2}\right\}\)

Phương trình sẽ là \(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)

\(\text{Δ}=\left(-3m+2\right)^2-4\left(2m^2-m\right)\cdot\left(-2\right)\)

\(=9m^2-12m+4+8\left(2m^2-m\right)\)

\(=9m^2-12m+4+16m^2-8m\)

\(=25m^2-20m+4=\left(5m-2\right)^2\)>=0 với mọi m

Phương trình sẽ có hai nghiệm phân biệt khi 5m-2<>0

=>m<>2/5

Phương trình sẽ có nghiệm kép khi 5m-2=0

=>\(m=\dfrac{2}{5}\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+1\right)y=m+1\\my=2-2x\end{matrix}\right.\)

Nếu m=0 thì hệ sẽ là y=0+1=1 và 2-2x=0

=>y=1 và x=1

Nếu m<>0 thì \(\left\{{}\begin{matrix}y=\dfrac{-2x+2}{m}\\x\cdot m+\left(m+1\right)\cdot\dfrac{-2x+2}{m}=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot m+x\cdot\dfrac{-2\left(m+1\right)}{m}+\dfrac{2m+2}{m}=m+1\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(m+\dfrac{-2m-2}{m}\right)=m+1-\dfrac{2m+2}{m}=\dfrac{m^2+m-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{m^2-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

Nếu m^2-2m-2=0 thì hệ vô nghiệm

Nếu m^2-2m-2<>0 thì hệ sẽ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m}\cdot\dfrac{m^2-m-2}{m^2-2m-2}+\dfrac{2}{m}=\dfrac{-2m^2+2m+4+2m^2-4m-4}{m\left(m^2-2m-2\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m^2-2m-2}\end{matrix}\right.\)

c: =>(m-1)x+2y=3m-1 và (2m+2)x-2y=2-2m

=>(3m+1)x=m+1 và y=(m+2)x+m-1

Nếu m=-1/3 thì hệ vô nghiệm

Nếu m<>-1/3 thì hệ sẽ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{m+1}{3m+1}\\y=\dfrac{m^2+3m+2}{3m+1}+m-1=\dfrac{m^2+3m+2+3m^2-3m+m-1}{3m+1}=\dfrac{4m^2+m+1}{3m+1}\end{matrix}\right.\)

9 tháng 8 2016

thanks

17 tháng 4 2019

1/  

\(x^2-2x+1< \left(x-1\right)\left(x-4\right)\)

\(\Rightarrow x^2-2x+1< x^2-4x-x+4\)

\(\Rightarrow x^2-2x+1< x^2-5x+4\)

\(\Rightarrow x^2-x^2-2x+5x< 4-1\)

\(\Rightarrow3x< 3\)

\(\Rightarrow x< 1\)

\(\Rightarrow S=\left\{x\in R;x< 1\right\}\)

NV
22 tháng 4 2020

- Với \(x\ge-\frac{3}{2}\)

\(\Leftrightarrow2x^2-x-2\ge2x+3\)

\(\Leftrightarrow2x^2-3x-5\ge0\Rightarrow\left[{}\begin{matrix}x\le-1\\x\ge\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\frac{3}{2}\le x\le-1\\x\ge\frac{5}{3}\end{matrix}\right.\)

- Với \(x< -\frac{3}{2}\)

\(\Leftrightarrow2x^2-x-2\ge-2x-3\)

\(\Leftrightarrow2x^2+x+1\ge0\) (luôn đúng)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x\le-1\\x\ge\frac{5}{3}\end{matrix}\right.\)

24 tháng 2 2016

\(mx^2-3x=x^2+1\Leftrightarrow\left(m-1\right)x^2-3x-1=0\)

Nếu m =1 thì \(\left(m-1\right)x^2-3x-1=0\) có dạng \(-3x-1=0\)  và có nghiệm \(x=-\frac{1}{3}\)

Nếu m \(\ne\)1 thì \(\left(m-1\right)x^2-3x-1=0\)  là phương trình bậc hai ẩn x, có  \(\Delta=4m+5\)

        * Nếu \(\Delta<0\) hay là \(m<-\frac{5}{4}\) thì  \(\left(m-1\right)x^2-3x-1=0\) vô nghiệm

        *  Nếu \(\Delta\ge0\) hay là \(m\ge-\frac{5}{4}\) ;  \(m\ne1\) thì  

                \(\left(m-1\right)x^2-3x-1=0\)  \(\Leftrightarrow x=\frac{3-\sqrt{4m+5}}{2\left(m-1\right)}:=x_1\) hoặc \(x=\frac{3+\sqrt{4m+5}}{2\left(m-1\right)}:=x_2\)

Ta có kết luận :

* Khi \(m<-\frac{5}{4}\) thì phương trình vô nghiệm

* Khi \(m=1\) thì phương trình  có một nghiệm \(x=-\frac{1}{3}\)

* Khi \(m\ge-\frac{5}{4};m\ne1\) thì phương trình có hai nghiệm \(x=x_1;_{ }\) \(x=x_2\)