K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

Gọi d là ƯCLN(12n+1,30n+2)

12n+1 chia hết cho d

30n+2 chia hết cho d

suy ra (12n+1)x5 chia hết cho d hay 60n+5 chia hết cho d

suy ra (30n+2)x2 chia hết cho d hay 60n+4 chia hết cho d

suy ra (60n+5) - (60n+4) chia hết cho d hay 1 chia hết cho d

Mà d lớn nhất 

Vậy d=1

suy ra 12n+1/30n+2 là phân số tối giản.

17 tháng 4 2016

a) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\) - \(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - 2.\(\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)\) - \(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\) - \(1-\frac{1}{2}-...-\frac{1}{100}\)

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Vậy \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\) = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Mình chỉ làm được phần a) thôi, nhưng k cho mình nhé

8 tháng 4 2016

gấp rút

5 tháng 10 2016

Ta tính tổng n số lẻ đầu tiên:

S= 1+3+5+7+...+(2n-3)+(2n-1)

=> ta có 2 trường hợp sau: 

TH1: n chẵn: 

S=(1+2n-1)+(3+2n-3)+... có n/2 số hạng, mà mỗi số hạng có giá trị là 2n

Vậy S= 2n= n^2

TH2: n lẻ:

Để tính S ta cũng ghép như trường hợp trên nhưng ta đc số hạng ,mỗi số hạng có giá trị là 2n: 

=> Tổng S= 2n+n=n^2

Vậy S= 1+3+5+7+...+(2n-3)+(2n-1)= n^2 nên S là 1 số chính phương.

20 tháng 5 2022

Tổng của n số lẻ tự nhiên liên tiếp là: 1 + 3 + 5 +... + 2n -1 = (1 + 2n -1) x n : 2= n2 là số chính phương

Vậy tổng của n số lẻ tự nhiên đầu tiên có là số chính phương

Tick choa mik cái nào

17 tháng 3 2020

 tính tổng n số lẻ đầu tiên:
S= 1+3+5+7+...+(2n-3)+(2n-1)
=> ta có 2 trường hợp sau: 
TH1: n chẵn: 

S=(1+2n-1)+(3+2n-3)+... có n/2 số hạng, mà mỗi số hạng có giá trị là 2n
Vậy S= 2n= n^2
TH2: n lẻ:
Để tính S ta cũng ghép như trường hợp trên nhưng ta đc số hạng ,mỗi số hạng có giá trị là 2n: 
=> Tổng S= 2n+n=n^2
Vậy S= 1+3+5+7+...+(2n-3)+(2n-1)= n^2 nên S là 1 số chính phương.