cho P(x)=100x100+99x99+98x98+...+2x2+x. Tính P(1)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(-1) = 100.(-1)¹⁰⁰ + 99.(-1)⁹⁹ + 98.(-1)⁹⁸ + ... + 2.(-1)² + 1.(-1)
= 100 - 99 + 98 + ... + 2 - 1
= (100 - 99) + (98 - 97) + ... + (2 - 1)
= 1 + 1 + ... + 1 (50 chữ số 1)
= 50
Lời giải:
$P(1)=100.1^{100}+99.1^{99}+....+2.1^2+1$
$=100+99+98+...+2+1=100(100+1):2=5050$
Ta có :
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.................+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)
Ta thấy :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
.............................
\(\dfrac{1}{99.99}< \dfrac{1}{98.99}\)
\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..................+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\Rightarrow A< \dfrac{99}{100}\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.....+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}\)
\(A< B\)
đặt A=1/5x5 +1/6x6 + 1/7x7 + .....+ 1/100x100
=>A>1/5x6 + 1/6x7 +1/7x8 + .... + 1/100x101
=>A>1/5 - 1/6 + 1/6 - 1/7 + +1/7 - 1/8 + ..... + 1/100 - 1/101
=>A> 1/5 - 1/101
=>A>96/505 > 96/576 = 1/6
=>A>1/6
=>A>B
a>1/5x6+1/6x7+...+1/100x101
=1/5-1/6+1/6-1/7+...+1/100-1/101
=1/5-1/101
=101/505-5/101
=96/101
vì 96/101>1/6 nên a>1/6
A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)
=> A= \(\frac{99}{100}>\frac{25}{26}\)
ta đặt vế trái là A ta có:
A=1/2.2 .(1+1/2.2+1/3.3+1/4.4+...+1/50.50)
A< 1/2.2.(1+1/1.2+1/2.3+1/3.4+1/4.5+...+1/49.50)
A< 1/2.2.(1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/49-1/50)
A< 1/2.2.(1+1-150)
A< 1/2.2.99/50
A< 1/4.99/50
A< 99/200<100/200=1/2
=>A<1/2
1 ... 1/1 x 1 + 1/2 x 2 + 1/3 x 3 + ... + 1/100 x 100
1 ... 1+1/2x2+1/3x3+...+1/100x100
1=1/1x1+1/2x2+1/3x3+...+1/100x100
\(P\left(1\right)=100+99+..+2+1\)
\(101.50=5050\)