Tính tổng:
S= 1/3 + 1/32 + 1/33 +....+ 1/38 + 1/ 39
GIẢI TỪNG BƯỚC RA GIÚP MK VS. MK SẼ TICK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= 1/3 + 1/32 + 1/33 +........+ 1/ 38 + 1/39
=> S x 3 = 1 + 1/3 + 1/32 + 1/33 +........+ 1/ 38
=> S x 3 - S = (1 + 1/3 + 1/32 + 1/33 +........+ 1/ 38 ) - (1/3 + 1/32 + 1/33 +........+ 1/ 38 + 1/39)
<=> S x 2 = 1 - 1/39 = (39 -1) / 39
=> S = \(\frac{3^9-1}{2.3^9}\)
S=a^0+a^1+a^2+....+a^2007 (1) <=>a.S=a^1+a^2+a^3+....+a^2007+a^2008 (2) lấy (2) trừ (1) ta được: a.S-S=a^2008-a^0=a^2008-1 <=>S=(a^2008-1)/(a-1) với a=-1/7 ta có: S= (-1/7)^0 + (-1/7)^1+(-1/7)^2 +...+ (-1/7)^2007 =[(-1/7)^2008 -1]/(-1/7 -1)
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)
\(\frac{4}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{7}{12}\)
\(\frac{-4}{9}\le x\le\frac{7}{18}\)
\(\frac{-8}{18}\le x\le\frac{7}{18}\)
\(\Rightarrow\)X \(\in\) {\(\frac{-7}{18};\frac{-6}{18};\frac{-5}{18};\frac{-4}{18};\frac{-3}{18};\frac{-2}{18};\frac{-1}{18};0;\frac{1}{18};\frac{2}{18};\frac{3}{18};\frac{4}{18};\frac{5}{18};\frac{6}{18}\)}
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}=\left(\frac{1}{10}:\frac{1}{11}\right).2=\frac{11}{5}\)
Tính A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
A = ....
Giúp mk nha ! đúng mk sẽ tick cho ^_^ !
A =1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
A = 64/128 + 32/128 + 16/128 + 8/128 + 4/128 + 2/128 + 1/128
A = 217/218 tick đúng nha
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(A-\frac{1}{2}A=\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{128}-\frac{1}{128}\right)+\left(\frac{1}{2}-\frac{1}{256}\right)\)
\(A=\left(\frac{1}{2}-\frac{1}{256}\right)\times2=1-\frac{1}{128}=\frac{127}{128}\)
\(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)
\(\Rightarrow3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}+\frac{1}{3^8}\)
\(\Rightarrow3S-S=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\right)\)
\(\Rightarrow2S=1-\frac{1}{3^9}\)
\(\Rightarrow S=\frac{1-\frac{1}{3^9}}{2}\)
thế nào vậy