Cho △ ABC cân tại A. Có M là TĐ của BC
1) Chứng minh rằng △AMB= △AMC
2) Chứng minh AM vuông góc BC
3) Chứng minh AM là tia p/g của góc BAC
4) Kẻ MH vuông góc với AB; MK vuông góc với AC. Chứng minh rằng △AHK cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đo: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>MH=MK và góc HMA=góc KMA
=>MA là phân giác của góc HMK và ΔHMK cân tại M
a)Ta có: tam giác ABC là tam giác cân
\(=>AB=AC\)
Mà \(AB=4cm\)
=>>AC=4cm
b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)
c) Xét tam giác ABM và tgiác ACM có
AB=AC(cmt)
AM: chung
==>>tgiác ABM=tgiác ACM( ch-cgv)
d) Ta có: tam giác ABM=tgiác ACM(cmt)
=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)
Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)
\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)
=> AMvuông góc vs BC
e) Xét tgiác BMH và tgiác CMK có :
BM=CM( 2 cạnh tương ứng , cmt(a))
\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)
==>>>tgiác BMH=tgiác CMK(ch-gn)
=>MH=MK( 2 cạnh tương ứng)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
Xét ΔABC có AE/AB=AF/AC
nên FE//BC
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
a/ Xét ΔABMΔABM và ΔACMΔACM có:
AMAM cạnh chung
AB=AC(gt)AB=AC(gt)
MB=MCMB=MC ( M là trung điểm BC )
Do đó ΔABM=ΔACM(c.c.c)ΔABM=ΔACM(c.c.c)
b/ Xét ΔAMCΔAMC và ΔDMBΔDMB có:
BM=CM(gt)BM=CM(gt)
ˆBMD=ˆCMABMD^=CMA^ ( đối đỉnh )
MD=MA(gt)MD=MA(gt)
Do đó ΔAMC=ΔDMB(c.g.c)ΔAMC=ΔDMB(c.g.c)
⇒AC=BD⇒AC=BD ( cạnh tương ứng )
c/ Vì ΔAMC=ΔDMB(cmt)⇒ˆMBD=ˆMCAΔAMC=ΔDMB(cmt)⇒MBD^=MCA^( góc tương ứng )
Xét hai vị trí này là hai vị trí so le trong mà bằng nhau, suy ra AB//CD
bn hok tốt
a) Xét ΔAMB và ΔAMC có
AM chung
BM=CM(M là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(c-c-c)
a) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB và AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
hình thì bạn tự vẽ nha !
a) xét ΔAMB và ΔAMC, ta có :
AB = AC (gt)
MB = MC (vì M là trung điểm của cạnh BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
⇒ AM vuông góc với BC
c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
xét ΔAHM và ΔAKM, ta có :
AM là cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (cmt)
⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)
⇒ HA = KA (2 cạnh tương ứng)
HB không thể nào bằng AC được nha, có thể đề sai
d) vì HA = KA nên ⇒ ΔHAK là tam giác cân
trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\) (1)
trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\) (2)
từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC
Chứng minh:
a) Xét hai ∆AMB và ∆AMC có:
AB = AC (GT)
MB = MB (M là trung điểm của BC)
AM là cạnh chung
Vậy ∆AMB = ∆AMC(c.c.c)
b) Có ∆AMB = ∆AMC(theo a)
⇒ Góc AMB = Góc AMC(2 góc tương ứng)
mà góc AMB + AMC = 180° (2 góc kề bù)
⇒ Góc AMB = Góc AMC = 90°
⇒ AM ∟ BC
c) ΔABC có:
AB = AC(GT)
⇒ ΔABC cân tại A
⇒ Góc B = Góc C
Có MH∟AB tại H ⇒ Góc MHB = 90°
Có MK∟AC tại K ⇒ Góc MKC = 90°
Xét hai ΔBHM và ΔCKM có:
Góc B = Góc C(ΔABC cân tại A)
MB = MC(M là trung điểm của BC)
Góc MHB = Góc MKC = 90°
Vậy ΔBHM = ΔCKM(g.c.g)
⇒ HB = KC(2 cạnh tương ứng)
Có HB + HA = AB
⇒ HA = AB - HB
Có KC + KA = AC
⇒ KA = AC - KC
mà AB = AC(GT)
HB = KC(2 cạnh tương ứng)
⇒ HA = KA (2 cạnh tương ứng)
1: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
2: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
3: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
4: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK
hayΔAHK cân tại A