giúp mình bài này vs!!!!
tìm tất cả các phân số tối giản có mẫu dương khác 1,biết rằng tích của tử và mẫu bằng 840 và phân số này viết được dưới dạng số thập phân hữu hạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta phân tích : 1260 = 22.32.5.7
Gọi tử số của phân số cần tìm là a, mẫu số là b.
Để phân số\(\frac{a}{b}\) có thể viết dưới dạng số thập phân hữu hạn thì mẫu số b chỉ có ước nguyên tố là 2 và 5.
Hơn nữa phân số \(\frac{a}{b}\) tối giản nên a và b không có ước chung.
Vây thì ta có bảng:
b | 4 | 5 | 20 |
a | 315 | 252 | 63 |
\(\frac{a}{b}\) | \(\frac{315}{4}\) | \(\frac{252}{5}\) | \(\frac{63}{20}\) |
Vậy các phân số viết được là: \(\frac{315}{4};\frac{252}{5};\frac{63}{20}\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Mình sẽ tích cho nếu ai trả lời được ko cần nhanh hay chậm miễn là trả lời được
Con tham khảo bài toán có cách giải tương tự tại link dưới đây nhé:
Câu hỏi của Vũ Linh Đan - Toán lớp 7 - Học toán với OnlineMath
Ta có :
\(3150=2.3^2.5^2.7\)
Phân số viết được dưới dạng số thập phân hữu hạn nên mẫu chỉ gồm nhân tử 2 và 5
Phân số là tối giản nên chỉ có \(3^2;5^2\) xuất hiện ở tử hoặc mẫu không có trường hợp cả 3 (hoặc 5) xuất hiện ở cả tử và mẫu.
Từ những điều trên ta có các phân số:
\(\dfrac{3^2.5^2.7}{2}=\dfrac{1575}{2};\dfrac{2.3^2.7}{5^2}=\dfrac{126}{25};\dfrac{3^2.7}{2.5^2}=\dfrac{63}{50}\)
Mình có cách biểu diễn khác nhé :
Lời giải :
Gọi phân số tối giản là : \(\dfrac{a}{b}\) , ƯCLN ( a ; b ) = 1
Ta có : a.b = 3150 = 2 . 32 . 52 . 7
b không có ước nguyên tố 3 và 7 ; \(b\ne1\) và ƯCLN ( a ; b ) = 1 nên \(b\in\left\{2;25;50\right\}\)
Vậy các phân số phải tìm là :
\(\dfrac{1575}{2}=787,5\) ; \(\dfrac{126}{25}=5,04\) ; \(\dfrac{63}{50}=1,26\)