K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

- Xét tam giác ABC có:

BC<AB+AC (bất đẳng thức trong tam giác)

=>2MC<AB+AC

=>MC<(AB+AC)/2

a: Xét tứ giác AKBC có 

M là trung điểm của đường chéo CK

M là trung điểm của đường chéo AB

Do đó: AKBC là hình bình hành

Suy ra: BK//AC

b: Xét ΔABE và ΔACE có 

AB=AC

\(\widehat{BAE}=\widehat{CAEE}\)

AE chung

Do đó: ΔABE=ΔACE

a: Xét tứ giác AKBC có 

M là trung điểm của đường chéo CK

M là trung điểm của đường chéo AB

Do đó: AKBC là hình bình hành

Suy ra: BK//AC

b: Xét ΔABE và ΔACE có 

AB=AC

\(\widehat{BAE}=\widehat{CAEE}\)

AE chung

Do đó: ΔABE=ΔACE

17 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\\ b,\Delta BAM=\Delta CAM\\ \Rightarrow MB=MC\\ \Rightarrow M\text{ là trung điểm }BC\\ c,\Delta BAM=\Delta CAM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)

6 tháng 9 2018

a) Xét tam giác AHB và tam giác CAB có:

Góc AHB=góc CAB=90 độ(gt)

Góc B chung

=> tam giác AHB đồng dạng tam giác CAB(g.g)

b) Xét tam giác ABC vuông tại A(gt) có: BC2= AB+ AC2 = 225+400=625 => BC=25(cm) (pitago)

Ta có: SABC = 1/2.AB.AC = 1/2.15.20 = 150(cm2)

Nên SABC= 1/2.AH.BC=1/2.AH.25=150(cm2) => AH=12(cm)

Xét tam giác ABC vuông tại H(đường cao AH) có: BH2=AB2-AH2(pitago) => BH=9(cm)

Vậy...

c) Ta có AC/BD=20/30=2/3

Và AM/BH=6/9=2/3

=> AC/BD=AM/BH

Mặt khác ta có Góc ABC+ Góc BAH=90 độ(Góc AHB=90 độ)

Mà góc HAC+ góc BAH=90 độ(vì góc BAC=90 độ)

=> Góc ABC= Góc CAM

Xét tam giác DBH và tam giác CAM có:

Góc ABC = Góc CAM(cmt)

AC/BD=AM/BH(cmt)

=> Tam giác DBH đồng dạng tam giác CAM(c.g.c)

=> HD/MC=BD/AC => HD/BD=MC/AC hay HD.AC=BD.MC

30 tháng 4 2019

Bạn quang ơi, bạn lấy số liệu ở đâu ra vậy??

a: Xét ΔABC có AB=AC

nên ΔABC cân tại A

Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)

b: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

c: Ta có: M nằm trên đường trung trực của AC

nên MA=MC

hay ΔMAC cân tại M

7 tháng 5 2015

ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015

3. Từ ID.IE=IM2-MC= ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).

4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2

Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 15= 225.

7 tháng 5 2016

giải câu 1 với câu 2 giùm em với

20 tháng 11 2021

A C B M N K

a) Xét 2 tam giác ABM và ACM:

+ MB=MC

+ AB=AC

+ Cạnh AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Xét 2 tam giác ANK và BNC

+ NK=NC

+ NA=NB

+ Góc ANK = góc BNC ( hai góc đối đỉnh )

\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)

\(\Rightarrow AK=BC\)( hai cạnh tương ứng )

Mà M là trung điểm của BC nên BC=2MC

\(\Rightarrow AK=2.MC\)

c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )

Mà hai góc AKN và BCN là cặp góc so le trong

\(\Rightarrow AK//BC\)

Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )

Mà góc AMB + AMC = 180 độ ( kề bù )\

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM\perp BC\)

 Mà AK//BC

\(\Rightarrow AM\perp AK\)