Cho tam giác ABC có M là trung điểm của AB. Chứng minh: MC < AC + CB/ 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE
\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\\ b,\Delta BAM=\Delta CAM\\ \Rightarrow MB=MC\\ \Rightarrow M\text{ là trung điểm }BC\\ c,\Delta BAM=\Delta CAM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)
a) Xét tam giác AHB và tam giác CAB có:
Góc AHB=góc CAB=90 độ(gt)
Góc B chung
=> tam giác AHB đồng dạng tam giác CAB(g.g)
b) Xét tam giác ABC vuông tại A(gt) có: BC2= AB2 + AC2 = 225+400=625 => BC=25(cm) (pitago)
Ta có: SABC = 1/2.AB.AC = 1/2.15.20 = 150(cm2)
Nên SABC= 1/2.AH.BC=1/2.AH.25=150(cm2) => AH=12(cm)
Xét tam giác ABC vuông tại H(đường cao AH) có: BH2=AB2-AH2(pitago) => BH=9(cm)
Vậy...
c) Ta có AC/BD=20/30=2/3
Và AM/BH=6/9=2/3
=> AC/BD=AM/BH
Mặt khác ta có Góc ABC+ Góc BAH=90 độ(Góc AHB=90 độ)
Mà góc HAC+ góc BAH=90 độ(vì góc BAC=90 độ)
=> Góc ABC= Góc CAM
Xét tam giác DBH và tam giác CAM có:
Góc ABC = Góc CAM(cmt)
AC/BD=AM/BH(cmt)
=> Tam giác DBH đồng dạng tam giác CAM(c.g.c)
=> HD/MC=BD/AC => HD/BD=MC/AC hay HD.AC=BD.MC
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Ta có: M nằm trên đường trung trực của AC
nên MA=MC
hay ΔMAC cân tại M
ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015
3. Từ ID.IE=IM2-MC2 = ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).
4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2
Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 152 = 225.
a) Xét 2 tam giác ABM và ACM:
+ MB=MC
+ AB=AC
+ Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Xét 2 tam giác ANK và BNC
+ NK=NC
+ NA=NB
+ Góc ANK = góc BNC ( hai góc đối đỉnh )
\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)
\(\Rightarrow AK=BC\)( hai cạnh tương ứng )
Mà M là trung điểm của BC nên BC=2MC
\(\Rightarrow AK=2.MC\)
c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )
Mà hai góc AKN và BCN là cặp góc so le trong
\(\Rightarrow AK//BC\)
Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )
Mà góc AMB + AMC = 180 độ ( kề bù )\
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\)
Mà AK//BC
\(\Rightarrow AM\perp AK\)
- Xét tam giác ABC có:
BC<AB+AC (bất đẳng thức trong tam giác)
=>2MC<AB+AC
=>MC<(AB+AC)/2