K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

a,Áp dụng định lý Pi-ta-go , ta có :

AB^2+AC^2=BC^2

12^2+AC^2=20^2

144+AC^2=400

AC^2=400-144

AC^2=256

\(\Rightarrow AC=\sqrt{256}=16\)

Ta có : BC>AC>AB

=> góc Â>B>C

b, Xét tg BAD và tg BHD vuông tại H

Có : AH=HD ( 2 tia đối )

B là góc chung

=> tg BAD = tg BHD 

=> BA=BD ( hai cạnh tương ứng)

Mà : trong tg BAD có BA=BD

=> tg BAD cân

c và d : k pt lm

a: AC=16cm

XétΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

c: Xét ΔBAC và ΔBDC có 

BA=BD

\(\widehat{ABC}=\widehat{DBC}\)

BC chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ΔBCD vuông tại D

12 tháng 1 2022

a:  AC=16cm

 XétΔABC có AB<AC<BC

 nên ˆC<ˆB<ˆAC^<B^<A^

b:  Xét ΔBAD có 

 BH là đường cao

 BH là đường trung tuyến

 Do đó: ΔBAD cân tại B

 c: Xét ΔBAC và ΔBDC có 

 BA=BD

 ˆABC=ˆDBCABC^=DBC^

 BC chung

 Do đó: ΔBAC=ΔBDC

 Suy ra: ˆBAC=ˆBDC=900BAC^=BDC^=900

 Do đó: ΔBCD vuông tại D

4 tháng 5 2021

a, Ta có : ∆ ABC vuông tại A ( gt)

-> BC^2 = AB^2 + AC^2 ( đ/lí Pytago )

-> AC^2 = BC^2 - AB^2 

Mà BC = 10 cm ( gt ) ; AB= 6 cm ( gt) 

Nên AC^2 = 10^2 - 6^2

-> AC^2 = 100- 36

-> AC^2 = 64 

-> AC  = 8 cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Vậy: AC=12cm

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=16/3(cm)

12 tháng 4 2023

vuicảm ơn bạn nhé:))))))

2 tháng 2 2022

Ta có :O là trung điểm của BC(gt)

           O là trung điểm của AK(OA=OK)

=>ABKC là hình bình hành(dhnb)

Mà góc BAC = 90 độ

=>ABKC là hình chữ nhật (dhnb)

=>AB=CK và góc ACK = 90 độ

Xét tam giác ABC và tam giác CKA có:

 AB=CK(cmt)

 góc BAC=góc KCA( cùng bằng 90 độ)

 AC chung

Vậy tam giác ABC = tam giác CKA(c.g.c)

b)Xét tam giác AHB và tam giác CHA có

 góc AHB = góc CHA (=90 độ)

 góc BAH =góc ACH(cùng phụ với góc B)

Vậy tam giác AHB đồng dạng tam giác CHA(g.g)

=>\(\dfrac{AB}{AH}=\dfrac{AC}{CH}\)(1)

Ta có AH\(\perp\)CH

         ED\(\perp\)CH

=>AH//DE

Xét tam giác ACH có

 AH//DE

=>\(\dfrac{AE}{HD}=\dfrac{AC}{CH}\)

=>\(\dfrac{AE}{AH}=\dfrac{AC}{CH}\)(do AH=AD)(2)

Từ(1) và (2) => \(\dfrac{AB}{AH}=\dfrac{AE}{AH}\)

                    =>AB=AE(đpcm)

2 tháng 2 2022

-Lớp 7 chưa học Tam giác đồng dạng?