Chứng minh rằng :
a, \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{12}\)
b, \(\frac{1}{6}<\frac{1}{^{5^2}}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4}\)
c, \(\frac{1}{5}<\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}<\frac{2}{5}\)
d, \(1<\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}<2\)
b.Đặt A = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\) < \(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)= \(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\)= \(\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}\frac{1}{6}\)(2)
Từ (1) và (2) =>\(\frac{1}{6}\) < A < \(\frac{1}{4}\)