K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`A + B + C = x^2yz + xy^2z + zy^2x = xyz(x+y+z) = xyz`.

11 tháng 5 2022

\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)

Vậy ta có đpcm 

17 tháng 7 2023

Câu 1:

\(A\left(x\right)+B\left(x\right)\)

\(=\left(6x-4x^3+x-1\right)+\left(-3x-2x^3-5x^2+x+2\right)\)

\(=\left(6x+-3x+x\right)-\left(4x^3+2x^3\right)-5x^2+\left(-1+2\right)\)

\(=-6x^3-5x^2+4x+1\)

\(A\left(x\right)-B\left(x\right)\)

\(=\left(6x-4x^3+x-1\right)-\left(-3x-2x^3-5x^2+x+2\right)\)

\(=\left(-4x^3+2x^3\right)+5x^2+\left(6x+x-x\right)+\left(-1-2\right)\)

\(=-2x^3+5x^2+6x-3\)

4 tháng 4 2016

Đợi tí nhé, đừng off, mk giải ra ròi, mình sẽ chép lên cho bạn

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

NV
27 tháng 12 2022

1.

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)

Tương tự:

\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)

\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)

Cộng vế:

\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
27 tháng 12 2022

2.

Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)

Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)

Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)

Biến đổi giả thiết:

\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)

\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(\Rightarrow ab+bc+ca=a+b+c-1\)

BĐT cần chứng minh trở thành:

\(a^2+b^2+c^2\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)

\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)

\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)

6 tháng 3 2022

\(A=x^2yz\) \(B=xy^2z\) \(C=xyz^2\)

\(A+B+C=x^2yz+xy^2z+xyz^2\)

                    \(=xyz\left(x+y+z\right)=xyz.1=xyz\)

 

1 tháng 3 2018

BÀI 1:

\(A+B=x^2y+xy^2\)

\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)

Vì    \(x+y\)\(⋮\)\(13\)

nên     \(xy\left(x+y\right)\)\(⋮\)\(13\)

Vậy    \(A+B\)\(⋮\)\(13\)  nếu      \(x+y\)\(⋮\)\(13\)

15 tháng 5 2020

44WRW

12 tháng 4 2016

Ta có: A + B + C = x2yz + xy2z + xyz= xyz(x + y + z) = xyz.1=xyz

27 tháng 4 2019

A=x2yz=x.x.y.z=(x).xyz

B=xy2z=xy.yz=y(xyz)

C=xyz2=xyzz=z(xyz)

A+B+C=(x+y+z)xyz=1.xyz=xyz