Cho A=2(x+1)/x+3
Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên
Giúp mik với nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+7}{\sqrt{x}-2}=1+\dfrac{7}{\sqrt{x}-2}\)
Để M nguyên \(\Leftrightarrow\text{ }7\text{ }⋮\text{ }\left(\sqrt{x}-2\right)\)
=> \(\sqrt{x}-2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;3;9\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)
a: \(B=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2x-1}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{1}{2x-1}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(2x-1\right)}=\dfrac{-4x}{2x-1}\)
b: |x|=3
=>x=3 hoặc x=-3
Khi x=3 thì \(B=\dfrac{-4\cdot3}{2\cdot3-1}=\dfrac{-12}{5}\)
Khi x=-3 thì \(B=\dfrac{-4\cdot\left(-3\right)}{2\cdot\left(-3\right)-1}=\dfrac{12}{-7}=\dfrac{-12}{7}\)
Để A nguyên thì 3n+3-1 chia hết cho n+1
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
A∈Z⇒\(\dfrac{2\left(x+1\right)}{x+3}\in Z\Rightarrow\left(2x+2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(2x+6-4\right)⋮\left(x+3\right)\\ \Rightarrow\left[2\left(x+3\right)-4\right]⋮\left(x+3\right)\)
\(\text{Mà}2\left(x+3\right)⋮\left(x+3\right)\\ \Rightarrow-4⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left(-4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
- Bạn ơi lớp 6 cũng làm được nhé :)
x ∈{0;-6;-2;-4}