Cho số P có dạng P = 3a01b6c29. Tìm các chữ số a,b,c biết rằng a3 + b3 + c3 = 349.
Casio
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai júp mình với, mai mình thi rồi, không được gải là thầy hiệu trưởng xén cổ mình đi đấy!!
Dựa vào điều kiện a^3+b^3+c^3 = 349. Ta nhận thấy:
1^3+1^3+7^3=345 => a,b,c < 7 (Vì một số = 7 thì tổng lập phương của 3 số sẽ luôn > 349, trừ trường hợp bộ 7,1,1 thì = 345 kô TM)
+ Có một số là 6 => tổng lập phương 2 số còn lại là 133 = > Chỉ có 2 và 5 được bộ 6,5,2
+ Có một số là 5 => số còn lại cao nhất là 5 => kô chọn được số nào thỏa mãn
Từ 4 trở xuống, không thể chọn được 2 số còn lại dưới 4 mà có tổng lập phương = 349 nên chỉ có 1 bộ 3 số thỏa mãn là 6,5,2
thay vào cái đống bên trên kia tìm ra
360126529 = 18977
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$a^3+a^3+1\geq 3a^2$
$b^3+b^3+1\geq 3b^2$
$c^3+c^3+1\geq 3c^2$
$\Rightarrow 2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)$
$\Leftrightarrow 2P+3\geq 9$
$\Leftrightarrow P\geq 3$
Vậy $P_{\min}=3$ khi $(a,b,c)=(1,1,1)$
----------------
Tìm max:
$a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2\leq 3$
$\Rightarrow a,b,c\leq \sqrt{3}$
Do đó: $a^3-\sqrt{3}a^2=a^2(a-\sqrt{3})\leq 0$
$\Rightarrow a^3\leq \sqrt{3}a^2$
Tương tự với $b,c$ và cộng theo vế:
$P\leq \sqrt{3}(a^2+b^2+c^2)=3\sqrt{3}$
Vậy $P_{\max}=3\sqrt{3}$ khi $(a,b,c)=(\sqrt{3},0,0)$ và hoán vị.