: Cho ABC cân tại A ( 0 A 90 ), vẽ BD ⊥ AC và CE ⊥ AB. Gọi H là giao điểm của BD và CE. a/Chứng minh : ABD = ACE b/Chứng minh AED cân c/Chứng minh AH là đường trung trực của E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét 2 tam giác vuông ABD và ACE có:
AB=AC(gt)
\(\widehat{A}\)chung
=> tam giác ABD=tam giác ACE(CH-GN)
b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE
=> tam giác AED cân tại A
c) ta thấy H là trực tâm của tam giác cân ABC
=> \(\widehat{BAH}\)=\(\widehat{CAH}\)
gọi O là giao điểm của AH và ED
xét tam giác AOE và tam giác AOD có:
AE=AD(tam giác AED cân)
\(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)
AO chung
=> tam giác AOE=tam giác AOD(c.g.c)
=> OE=OD=> O là trung điểm của ED(1)
\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)
từ (1) và (2) => AH là trung trực của ED
a) Xét tam giác ABD và tg ACE có:
D^ = E^ = 90độ (gt)
A là góc chung
AB = AC ( do tam giác ABC cân tại A)
=> tam giác ABD = tam giác ACE (ch-gn)
b) Vì AD = AE ( tg ABD = tg ACE)
=> tg AED cân tại A.
c) Vì AD = AE (cmt)
=> A thuộc đường trung trực của ED.
Xét tg AEH và tg ADH có:
E^ = D^ = 90độ (gt)
AD = AE (cmt)
AH cạnh huyền chung.
=> tg AEH = tg ADH (ch-cgv)
=> HE = HD.
=> H thuộc đường trung trực của ED.
=> AH là đường trung trực của ED.
a. Xét tam giác ABD và tam giác ACE có:
-AEC=ADB=90 (gt)
-AB=AC (2 cạnh bên tam giác cân ABC)
-A là góc chung
=> tam giác ABD = tam giác ACE (g.c.g) (đpcm)
b.*Vì tam giác ABD = tam giác ACE (câu a)
=> BH=CH (2 cạnh tương ứng)
*Xét tam giác EHB và tam giác DHC có:
-BEH=CDH=90 (gt)
-BH=CH (CM trên)
-EHB=DHC (đối đỉnh)
=> tam giác EHB = tam giác DHC (c.huyền-g.nhọn)
=>EB=DC (2 cạnh tương ứng)
*Ta có: AB=AE+EB
và AC=AD+DC
mà AB=AC (2 cạnh bên tam giác cân ABC)
và EB=DC (CM trên)
=>AE=AD
=> Tam giác ADE cân tại A (đpcm)
c. Vì AE=AD (CM trên)
và HE=HD (CM trên)
=> AH là đường trung trực của ED (đpcm)
d. *Xét tam giác DKC và tam giác DBC có:
-BDC=KDC=90 (gt)
-BD=KD (gt)
-DC là cạnh chung
=>tam giác DKC = tam giác DBC (c.g.c)
=> DBC=DKC (2 góc tương ứng) (1)
*Vì BH=CH (câu b)
=> tam giác HBC cân tại H
=>DBC=ECB (2 góc ở đáy tam giác cân) (2)
*Từ (1) và (2) => ECB=DKC (đpcm)
a, Xét tg ABD ( D=90) và tg ACE ( E=90)
A; góc chung
AB =AC
tg ABD = tg ACE ( cạnh huyền - góc nhọn )
b, vì tg ABD =tg ACE nên AE = AD ( 2 cạnh tương ứng ) suy ra : tg AED cân
c, Xét tg AEH ( E = 90 ) và tg ADH ( D = 90 )
AE = AD ( cm ý b)
AH : cạnh chung
suy ra : tg AEH = tg ADH ( cạnh góc vuông - cạnh huyền )
suy ra AH là đường phân giác
Xét tg AED : vì trong tam giac cân, đường phân giác đồng thời là đường trung trực
suy ra AH là đường trung trực của ED
d, Xét tg ECB (E=90) và tg DBC
a, xét tam giác abd và tam giác ace có
góc adb=góc aec =90o (gt)
góc a chung
ab=ac (do tam giác abc cân -gt)
suy ra tam giác abd= tam giác ace (cạnh huyền - góc nhọn)
b, có ad=ae (do tam giác abd = tam giác ace-cmt)
suy ra tam giác aed cân tại a
c, có ad=ae (cmt)
suy ra a thuộc đường trung trực của ed
xét tam giác aeh và tam giác adh có
góc aeh = góc adh=90o (gt)
ad=ae (cmt)
ah cạnh huyền chung
suy ra tam giác aeh=tam giác adh (cạnh huyền cạnh góc vuông)
suy ra hd=he
suy ra h thuộc đường trung trực của ed
suy ra ah là đường trung trực của ed
d,xét tam giác bdc và tam giác kdc có
bd=dk (gt)
góc bdc = góc cdk (=90o-gt)
cd chung
suy ra tam giác bdc = tam giác kdc (c.g.c)
suy ra góc dbc = góc dkc (1)
có góc bdc= góc abc - góc abd
góc ecb= góc acb - góc ace
mà góc abc=góc acb (do tam giác abc cân tại a -gt)
góc abd=góc ace (do tam giác abd=tam giác ace-cmt)
suy ra góc dbc= góc ecb (2)
từ(1)(2) suy ra góc ecb = góc dkc
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
Do đó ΔAEH=ΔADH
Suy ra: HE=HD
hay H nằm trên đường trung trực của ED(1)
Ta có: AE=AD
nên A nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra AH là đường trung trực của ED
❤❤❤