K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

tử số A > tử số B: 10^8+2>10^8

Hai số cùng mẫu nên A >B

28 tháng 12 2015

a , 7/6>9/8

b, 0/100=0/10

c, 7/13>7/15

tick cho mk 2 tick nha

4 tháng 10 2017

a] 2^10 < 8^4

cầm máy tính mà bấm

4 tháng 10 2017

mk nha,nếu mk có thiếu thì bn cũng cho sai phải ko nhưng bn chỉ bảo là ai nhanh thôi chứ bn có bảo ai đúng đâu,nên mk nha

30 tháng 3 2017

các bạn giúp mình với nhanh lên nhé.Mình sẽ cho

30 tháng 3 2017

A>B

BẠN Ạ

8 tháng 5 2015

Bài 1: A=108 +2/108 -1=108 -1+3/108 -1=108 -1/108-1 +3/108 -1=1+3/108 -1

          B=108 /108 -3=108 -3+3/108 -3=108 -3/108 -3 +3/108 -3=1+3/108 -3

   Vì 108 -1>108 -3=>3/108 -1<108 -3=>1+3/108 -1<1+3/108 -3=>A<B

16 tháng 3 2016

co phai = 6 ko ban chac la sai nhj

16 tháng 3 2016

4 nha ban

dung ko

1 tháng 9 2017

ca ban lam on nhanh len vi chieu minh phai nop cho cho giao

3 tháng 9 2017

lời giải rõ ràng chứ gì

26 tháng 9 2020

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)