Cho đoạn thẳng AB=13cm, trên đó lấy điểm C thuộc AB sao cho ac=9cm. Trên tia Cx vuông góc AB lấy điểm D sao cho CD=6cm. Vẽ đường tròn tâm O, đường kính AB
a) CRM: D thuộc (O) đường kính AB
b) so sánh 2 cung nhỏ BD và AD
c) gọi E là trung điểm AB, P là trung điểm BD. Tia OE cắt (O) tại Q, OP cắt (O) tại M. Tính số đo cung MQ
Lớp 9ToánBài 1: Góc ở t
a: Xét ΔDAB có
DC là đường cao
\(DC^2=AC\cdot CB\)
Do đó: ΔDAB vuông tại D
=>D nằm trên đường tròn đường kính AB
b: Xét ΔDAB vuông tại D có DC là đường cao
nên \(\left\{{}\begin{matrix}DA^2=AC\cdot AB\\DB^2=BC\cdot BA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=3\sqrt{13}\left(cm\right)\\DB=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
Vì DA<DB nên \(\stackrel\frown{DA}< \stackrel\frown{DB}\)