K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

Xét tứ giác AFHE có:

Góc HEA + Góc HFA = 90 độ + 90 độ = 180 độ.

Mà 2 góc này ở vị trí đối nhau.

=> Tứ giác AFHE nội tiếp đường tròn (dhnb).

 

14 tháng 4 2022

a) Xét tam giác ABC có

BE là đường cao của AC tại E => góc BEA = góc BEC =90

CF là đường cao của AB tại F => góc CFA = góc CFB =90 

AD là đường cao của BC tại D => góc ADB = góc ADC

xét tứ giác BFEC có 

góc BFC = góc BEC = 90 

mà F và E là 2 đỉnh đối => tứ giác nội tiếp (DHNB)

=> góc EFC = góc EBC (2 góc nội tiếp chắn EC)

=> góc FEH = góc HCB ( 2 góc nội tiếp chắn BF)

Xét (O) có

góc MNC = góc EBC (2 góc nội tiếp chắn MC )

=>góc EFC = góc MNC 

mà 2 góc ở vị trí đồng vị => song song (tc)

b) Xét tứ giác BFHD có 

góc BDA + góc CFB =180 

mà F và D là 2 đỉnh kề 

=> BFHD là tứ giác nội tiếp (DHNB)

=> góc CFD= góc EBC (góc nội tiếp chắn HD)

=> Góc EFC = góc CFD (= góc EBC)

=> FC là phân giác của góc DFE

=> FH là phân giác của góc DFE (H thuộc DC)

=Xét tứ giác CDHE có 

góc ADC + góc CEB =180 

mà D và E là 2 đỉnh kề 

=> tứ giác CDHE nội tiếp 

=> góc HCB = góc HED(2 góc nội tiếp chắn HD)

=> góc FEH = góc HEB (= góc HCD) 

=> HE là phan giác góc FED

xét tma giác FED có

FH là phân giác góc EFD 

EH lag phân giác góc FED 

mà FH giao với EH tại H 

=> H là giao điểm 3 đường phân giác của tam giác EFD 

=> H là tâm đường tròn nội tiếp tam giác EFD 

c) gọi giao điểm của đường vuông góc kẻ từ A -> EF cắt EF tại K và cắt BE tại T và cắt (O) tại I 

vì TK vuông góc với EF tại K 

=> góc TKE = 90 

xét tam giác TKE và tam giác TEA có

góc T chung 

góc TKE = góc TEA (=90)

=> đồng dạng(g-g) => góc TEK = góc TAE 

Xét tứ giác nội tiếp BFEC có

 Góc TEK = góc FCB ( 2 góc nội tiếp chắn BF;T thuộc BE)

Xét (O) có

Góc TAE = góc CBI ( 2 góc nội tiếp chắn IC)

=> góc FCB = góc IBC 

mà 2 góc ở vị trí so le trong => BI // CF (tc)

mà CF vuông góc với AB 

=> IB vuông góc với AB 

=> góc IBA=90 (tc)

xét (O)

=> góc IBA=1/2 số đo cung AI (góc nội tiếp chắn AI)=> số đo cũng AI = 180

=> AI là đường kính của đường tròn tâm (O)

=> A,I,O thẳng hàng 

mà AI vuông góc với EF => đường vuông góc với EF sẽ luông đi qua điểm O 

mà O cố định => đường vuông góc với EF sẽ luông đi qua điểm O cố định

 

 

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Tâm I là trung điểm của AH

23 tháng 4 2019

bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????

2 tháng 5 2019

3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)

Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE

4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)2016-04-23_193155

Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE

⇒DKE = DEK => ΔDEK cân tại D => DE = DK

Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: BCEF là tứ giác nội tiếp(cmt)

nên \(\widehat{EBC}=\widehat{EFC}\)(hai góc cùng nhìn cạnh EC)

hay \(\widehat{MBC}=\widehat{HFE}\)(1)

Xét (O) có 

\(\widehat{MBC}\) là góc nội tiếp chắn cung CM

\(\widehat{MNC}\) là góc nội tiếp chắn cung CM

Do đó: \(\widehat{MBC}=\widehat{MNC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MBC}=\widehat{HNM}\)(2)

Từ (1) và (2) suy ra \(\widehat{HFE}=\widehat{HNM}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên FE//MN(Dấu hiệu nhận biết hai đường thẳng song song)

19 tháng 5 2021

Làm giúp mình luôn câu d với ạ

 

1 tháng 5 2019

câu c nè: mik ns ý chính nhé

h bạn kẻ tiếp tuyến tại A

chứng minh đc AO vuông góc vs MN

=> OA vuông góc vs EF

do OA cố định

=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định

do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha 

1 tháng 6 2021

b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).

Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.

Từ đó NB là tiếp tuyến của (O).

c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)

\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).

Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).

Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).

Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.

Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định