Cho tam giác ABC , M là trung điểm AB , N là trung điểm AC, P là trung điểm BC. Chứng minh tam giác ABC đồng dạng với tam giác PMN
Mọi người giúp e với ạ , e cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
a/
Xét tg vuông HAB và tg vuông ABC có
\(\widehat{HAB}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAB đồng dạng với tg ABC (g.g.g)
b/ Xét tg vuông ABC có
\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9cm\)
c/ Đề bài sai sửa thành HA.HB=HC.HD
Xét tg vuông HBD và tg vuông HAC có
BD//AC (gt) \(\Rightarrow\widehat{HBD}=\widehat{HCA}\) (góc so le trong)
=> tg HBD đồng dạng với tg HAC
\(\Rightarrow\dfrac{HD}{HA}=\dfrac{HB}{HC}\Rightarrow HA.HB=HC.HD\)
d/
Xét tg vuông HAC, nối HN có
AN=CN (gt) => \(HN=AN=CN=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg NHC cân tại N \(\Rightarrow\widehat{NHC}=\widehat{NCH}\) (góc ở đáy tg cân) (1)
Xét tg vuông HBD, nối HM có
BM=DM (gt) => \(HM=BM=DM=\dfrac{BD}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg MBH cân tại M => \(\widehat{MBH}=\widehat{MHB}\) (góc ở đáy tg cân) (2)
Mà BD//AC (gt) \(\Rightarrow\widehat{NCH}=\widehat{MBH}\) (góc sole trong ) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{NHC}=\widehat{MHB}\)
Mà \(\widehat{NHC}+\widehat{BHN}=\widehat{BDC}=180^o\)
\(\Rightarrow\widehat{MHB}+\widehat{BHN}=\widehat{MHN}=180^o\) => M; H; N thẳng hàng
a)Xét tứ giác AMDN có: góc AMD=900
góc MAN=900
góc DNA=900
=> Tứ giác AMDN là hình chữ nhật(dhnb hcn)
b)Xét tam giác ABC vuông tại A có:D là trung điểm của BC
=>AD là đường trung tuyến ứng với cạnh huyền BC
=>AD=BD=CD=BC/2
=> tg ACD cân tại D
Xét tg ACD cân tại D có: DN là đường cao
=>DN là đường trung tuyến của tam giác ADC
=>N là trung điểm của AC
Answer:
Xét tam giác ABC:
M, N, P lần lượt là trung điểm của AB, AC, BC
=> MN, MP, NP là đường trung bình của tam giác ABC
\(\Rightarrow\frac{MN}{BC}=\frac{MP}{AC}=\frac{NP}{AB}=\frac{1}{2}\)
Xét tam giác PMN và tam giác ACB
\(\frac{PM}{AC}=\frac{MN}{CB}=\frac{PN}{AB}=\frac{1}{2}\)
Vậy tam giác PMN đồng dạng với tam giác ACB