Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=-x^2\) và đường thẳng (d) đi qua điểm I(0;-1) và có hệ số góc k.
a) Gọi hoành độ của A; B lần lượt là x1, x2. Chứng minh: \(\left|x_1-x_2\right|\ge2\)
b) Chứng minh: Tam giác OAB vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay y=1 vào (P), ta được:
\(x^2=1\)
=>x=1 hoặc x=-1
Thay x=1 và y=1 vào (d), ta được:
\(m^2-1+3=1\)(vô lý)
Thay x=-1 và y=1 vào (d), ta được:
\(m^2-1-3=1\)
\(\Leftrightarrow m^2=5\)
hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
Đường thẳng có dạng: \(y=kx-1\)
Phương trình hoành độ giao điểm: \(x^2+kx-1=0\)
Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=-k\\x_Ax_B=-1\end{matrix}\right.\) \(\Rightarrow x_A^2+x_B^2=k^2+2\)
\(A\left(x_A;kx_A-1\right);B\left(y_B;kx_B-1\right)\)
Ta có: \(OA^2+OB^2=x_A^2+\left(kx_A-1\right)^2+x_B^2+\left(kx_B-1\right)^2\)
\(=\left(x_A^2+x_B^2\right)\left(k^2+1\right)-2k\left(x_A+x_B\right)+2\)
\(=\left(k^2+2\right)\left(k^2+1\right)-2k.\left(-k\right)+2\)
\(=k^4+5k^2+4\) (1)
\(AB^2=\left(x_A-x_B\right)^2+\left(kx_A-kx_B\right)^2\)
\(=\left(k^2+1\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)
\(=\left(k^2+1\right)\left(k^2+4\right)=k^4+5k^2+4\) (2)
(1);(2) \(\Rightarrow OA^2+OB^2=AB^2\) hay tam giác OAB luôn vuông tại O
Phương trình hoành độ giao điểm:
\(x^2=2\left(m-2\right)x+5\Leftrightarrow x^2-2\left(m-2\right)x-5=0\)
Do \(ac=-5< 0\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu
\(\Rightarrow x_1< 0< x_2\Rightarrow x_2+2>0\)
Theo hệ thức Viet: \(x_1+x_2=2\left(m-2\right)\)
Ta có:
\(\left|x_1\right|-\left|x_2+2\right|=10\)
\(\Leftrightarrow-x_1-x_2-2=10\)
\(\Leftrightarrow-2\left(m-2\right)=12\)
\(\Leftrightarrow m=-4\)
b) Để (d) đi qua (0;-1) thì
Thay x=0 và y=-1 vào y=ax+b, ta được:
\(a\cdot0+b=-1\)
\(\Leftrightarrow b=-1\)
Vậy: (d): y=ax-1
Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=ax-1\)
\(\Leftrightarrow\dfrac{1}{2}x^2-ax+1=0\)
\(\Delta=a^2-4\cdot\dfrac{1}{2}\cdot1=a^2-2\)
Để (d) và (P) tiếp xúc với nhau thì \(\Delta=0\)
\(\Leftrightarrow a^2=2\)
hay \(a\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Vậy: Để (d) tiếp xúc với (P) và (d) đi qua (0;-1) thì \(\left(a,b\right)=\left\{\left(\sqrt{2};-1\right);\left(-\sqrt{2};-1\right)\right\}\)
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2