giúp mình với, cảm ơn nhiều
Cho a>b, chứng tỏ: 3- 2a< 4- 2b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)
\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đặt x=a + b - 2c
y=b+c-2a
z=c+a-2b
=>x+y+z=(a + b - 2c)+(b+c-2a)+(c+a-2b)
=>x+y+z=0
=>x+y= - z (1)
=>(x+y)^3=(-z)^3
=>x^3+y^3+3xy(x+y)=(-z)^3
=>x^3+y^3+z^3 +3xy(-z)=0 {vì x+y=-z [theo (1)]}
=>x^3+y^3+z^3 -3xyz=0
=>x^3+y^3+z^3 =3xyz
Vậy (a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3=3(a + b - 2c) (b + c - 2a)(c + a - 2b)
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)
Bìa này đâu cần : \(\frac{a}{b}=\frac{c}{d}\)
Ta chứng minh ngược :
\(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\left(3c+2016b\right)\left(c-2d\right)=\left(3c+2016d\right)\left(a-2b\right)\)
\(\Rightarrow3ac-4032bd=3ac-4032bd\)( hiển nhiên đúng )
\(\Rightarrow\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)( đúng )
AB = CD và thành 3a + 2016 + ab =3434
= 3c + 3434 +cd= 4354
ds ________________________
a>b =>2a>2b =>-2a<-2b =>3-2a<3-2b. Mà 3-2b<4-2b. Vậy 3-2a<4-2b (tính chất bắc cầu).
Ta có \(a>b\Rightarrow2a>2b\Rightarrow-2a<-2b\)
Mà \(3<4\)
Do đó \(3-2a<4-2b\)