K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

a>b =>2a>2b =>-2a<-2b =>3-2a<3-2b. Mà 3-2b<4-2b. Vậy 3-2a<4-2b (tính chất bắc cầu).

25 tháng 4 2016

Ta có \(a>b\Rightarrow2a>2b\Rightarrow-2a<-2b\)

Mà \(3<4\)

Do đó \(3-2a<4-2b\)

30 tháng 3 2021

Giả sử (4a+2b)⋮3(4a+2b)⋮3

⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3

⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)

=> Giả sử đúng

Vậy (4a+2b)⋮3

a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)

\(=7xy+3x-2y-y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

23 tháng 5 2022

\(A=5xy-y^2-2xy+4xy+3x-2y\)

\(A=-y^2+7xy+3x-2y\)

\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)

\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)

\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(C=7a^2b-11b^2+9c^2\)

NV
7 tháng 2 2022

\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)

\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 2 2022

cảm ơn thầy ạ

Đặt x=a + b - 2c
       y=b+c-2a
       z=c+a-2b
=>x+y+z=(a + b - 2c)+(b+c-2a)+(c+a-2b)
=>x+y+z=0
=>x+y= - z                         (1)
=>(x+y)^3=(-z)^3
=>x^3+y^3+3xy(x+y)=(-z)^3
=>x^3+y^3+z^3 +3xy(-z)=0        {vì x+y=-z [theo (1)]}
=>x^3+y^3+z^3 -3xyz=0
=>x^3+y^3+z^3 =3xyz
Vậy (a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3=3(a + b - 2c) (b + c - 2a)(c + a - 2b)

27 tháng 11 2018

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)

\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)

\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)

\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)

\(=\frac{3a^2-b^2}{b^2}\)

\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)

Bìa này đâu cần : \(\frac{a}{b}=\frac{c}{d}\)

Ta chứng minh ngược :

 \(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\left(3c+2016b\right)\left(c-2d\right)=\left(3c+2016d\right)\left(a-2b\right)\)

\(\Rightarrow3ac-4032bd=3ac-4032bd\)( hiển nhiên đúng )

\(\Rightarrow\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)( đúng )

12 tháng 8 2016

AB = CD và thành 3a + 2016 + ab =3434

= 3c + 3434 +cd= 4354

ds ________________________