Giải bất phương trình sau: \(\dfrac{x^2-26}{10}\)+\(\dfrac{x^2-25}{11}\) \(\ge\) \(\dfrac{x^2-24}{12}\)+\(\dfrac{x^2-23}{13}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}=-5\)Ta có: \(\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}=-5\)
\(\Leftrightarrow\dfrac{74-x}{26}+1+\dfrac{75-x}{25}+1+\dfrac{76-x}{24}+1+\dfrac{77-x}{23}+1+\dfrac{78-x}{22}+1=0\)
\(\Leftrightarrow\dfrac{100-x}{26}+\dfrac{100-x}{25}+\dfrac{100-x}{24}+\dfrac{100-x}{23}+\dfrac{100-x}{22}=0\)
\(\Leftrightarrow\left(100-x\right)\left(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}\right)=0\)
mà \(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}>0\)
nên 100-x=0
hay x=100
Vậy: S={100}
Ta có : \(\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}=-5\)
\(\Leftrightarrow\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}+5=0\)
\(\Leftrightarrow\dfrac{74-x}{26}+1+\dfrac{75-x}{25}+1+\dfrac{76-x}{24}+1+\dfrac{77-x}{23}+1+\dfrac{78-x}{22}+1=0\)
\(\Leftrightarrow\dfrac{100-x}{26}+\dfrac{100-x}{25}+\dfrac{100-x}{24}+\dfrac{100-x}{23}+\dfrac{100-x}{22}=0\)
\(\Leftrightarrow\left(100-x\right)\left(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}\right)=0\)
Thấy : \(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}\ne0\)
\(\Rightarrow100-x=0\)
\(\Leftrightarrow x=100\)
Vậy ...
\(1,\left(dk:x\ne0,-1,4\right)\)
\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)
\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)
\(\Leftrightarrow-x=-44\)
\(\Leftrightarrow x=44\left(tm\right)\)
\(2,\left(đk:x\ne4\right)\)
\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)
\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)
\(\Leftrightarrow28-12-6x-9+5x-20=0\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\left(tm\right)\)
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
\(\Leftrightarrow\dfrac{2}{x^2-3x+2}-\dfrac{3}{x^2+5x+4}\ge0\)
\(\Leftrightarrow\dfrac{-x^2+19x+2}{\left(x^2-3x+2\right)\left(x^2+5x+4\right)}\ge0\)
\(\Leftrightarrow\dfrac{-x^2+19x+2}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}2< x\le\dfrac{19+3\sqrt{41}}{2}\\\dfrac{19-3\sqrt{41}}{2}\le x< 1\\-4< x< -1\end{matrix}\right.\)
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\) \(\Leftrightarrow\) \(6\left(\dfrac{2-x}{3}-x-2\right)\le6\left(\dfrac{x-17}{2}\right)\) \(\Leftrightarrow\) 4-2x-6x-12\(\le\)3x-51 \(\Leftrightarrow\) -2x-6x-3x\(\le\)-51-4+12 \(\Leftrightarrow\) -11x\(\le\)-43 \(\Rightarrow\) x\(\ge\)43/11.
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\) \(\Leftrightarrow\) \(12\left(\dfrac{2x+1}{3}+\dfrac{4-x}{4}\right)\le12\left(\dfrac{3x+1}{6}+\dfrac{4-x}{12}\right)\) \(\Leftrightarrow\) 8x+4+12-3x\(\le\)6x+2+4-x \(\Leftrightarrow\) 8x-3x-6x+x\(\le\)2+4-4-12 \(\Leftrightarrow\) 0x\(\le\)-10 (vô lí).
a) \(\dfrac{2-x}{3}-x-2\le\dfrac{x-17}{2}\)
\(\Leftrightarrow2\left(2-x\right)-6\left(x+2\right)\le3\left(x-17\right)\)
\(\Leftrightarrow4-2x-6x-12\le3x-51\)
\(\Leftrightarrow-11x\le-43\)
\(\Leftrightarrow x\ge\dfrac{43}{11}\)
Vậy S = {\(x\) | \(x\ge\dfrac{43}{11}\) }
b) \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)
\(\Leftrightarrow4\left(2x+1\right)-3\left(x-4\right)\le2\left(3x+1\right)-\left(x-4\right)\)
\(\Leftrightarrow8x+4-3x+12\le6x+2-x+4\)
\(\Leftrightarrow0x\le-10\) (vô lý)
Vậy \(S=\varnothing\)
\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)
\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)
Bất phương trình đó tương đương với:
\(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\)
⇔ \(x^2-36\ge0\)
⇔ \(x^2\ge36\)
⇔ \(\sqrt{x^2}\ge6\)
⇔ \(\left|x\right|\ge6\)
⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)