K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Áp dụng BĐT Cô-si, ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge3\sqrt[3]{\frac{1}{\sqrt{xyz}}}\)

Mặt khác, ta có : \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=1\)

\(\Rightarrow P\ge3\)

Vậy GTNN của P là 3 khi x = y = z = 1

1 tháng 9 2021

Cách đơn giản hơn cách của anh Tùng:) sửa nốt là thực dương :V

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{\left(1+1+1\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Xét bđt phụ \(x+y+z\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)với x,y,z > 0 ( cấy ni thì dễ rồi nhân 2 vào cả 2 vế chuyển vế là xong )

\(\Rightarrow P\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

Dấu "=" xảy ra <=> x=y=z=1

DD
28 tháng 9 2021

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

Với \(x=0\Leftrightarrow y=0\)

Với \(x,y\ne0\)

\(\left(\sqrt{x^2+1}-x\right)\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{x^2+1}-x\)

\(\Leftrightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)

Tương tự ta cũng có: \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)

suy ra \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

\(M=10x^4+8y^4-15xy+6x^2+5y^2+2017\)

\(=18x^4+26x^2+2017\ge2017\)

Dấu \(=\)tại \(x=0\Rightarrow y=0\).

NV
20 tháng 9 2021

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))

AH
Akai Haruma
Giáo viên
24 tháng 6

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$P\geq (x^2+y^2)^2=\frac{1}{4}[(x^2+y^2)(1+1)]^2\geq \frac{1}{4}[(x+y)^2]^2=\frac{1}{4}(x+y)^4=\frac{1}{4}(\sqrt{10})^4=25$

Vậy $P_{\min}=25$. Giá trị này đạt tại $x=y=\frac{\sqrt{10}}{2}$